Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning
Data(s) |
14/11/2011
14/11/2011
28/07/2006
|
---|---|
Resumo |
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention. Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624) |
Identificador | |
Publicador |
Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems |
Relação |
BU CAS/CNS Technical Reports;CAS/CNS-TR-2006-007 |
Direitos |
Copyright 2006 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. Boston University Trustees |
Palavras-Chave | #Texture segregation #Object recognition #Image segmentation #Perceptual grouping #Spatial attention #Object attention #Attentional shroud #Visual cortex #Adaptive Resonance Theory (ART) #ART |
Tipo |
Technical Report |