866 resultados para Monitoring Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sudden hydrocarbon influx from the formation into the wellbore poses a serious risk to the safety of the well. This sudden influx is termed a kick, which, if not controlled, may lead to a blowout. Therefore, early detection of the kick is crucial to minimize the possibility of a blowout occurrence. There is a high probability of delay in kick detection, apart from other issues when using a kick detection system that is exclusively based on surface monitoring. Down-hole monitoring techniques have a potential to detect a kick at its early stage. Down-hole monitoring could be particularly beneficial when the influx occurs as a result of a lost circulation scenario. In a lost circulation scenario, when the down-hole pressure becomes lower than the formation pore pressure, the formation fluid may starts to enter the wellbore. The lost volume of the drilling fluid is compensated by the formation fluid flowing into the well bore, making it difficult to identify the kick based on pit (mud tank) volume observations at the surface. This experimental study investigates the occurrence of a kick based on relative changes in the mass flow rate, pressure, density, and the conductivity of the fluid in the down-hole. Moreover, the parameters that are most sensitive to formation fluid are identified and a methodology to detect a kick without false alarms is reported. Pressure transmitter, the Coriolis flow and density meter, and the conductivity sensor are employed to observe the deteriorating well conditions in the down-hole. These observations are used to assess the occurrence of a kick and associated blowout risk. Monitoring of multiple down-hole parameters has a potential to improve the accuracy of interpretation related to kick occurrence, reduces the number of false alarms, and provides a broad picture of down-hole conditions. The down-hole monitoring techniques have a potential to reduce the kick detection period. A down-hole assembly of the laboratory scale drilling rig model and kick injection setup were designed, measuring instruments were acquired, a frame was fabricated, and the experimental set-up was assembled and tested. This set-up has the necessary features to evaluate kick events while implementing down-hole monitoring techniques. Various kick events are simulated on the drilling rig model. During the first set of experiments compressed air (which represents the formation fluid) is injected with constant pressure margin. In the second set of experiments the compressed air is injected with another pressure margin. The experiments are repeated with another pump (flow) rate as well. This thesis consists of three main parts. The first part gives the general introduction, motivation, outline of the thesis, and a brief description of influx: its causes, various leading and lagging indicators, and description of the several kick detection systems that are in practice in the industry. The second part describes the design and construction of the laboratory scale down-hole assembly of the drilling rig and kick injection setup, which is used to implement the proposed methodology for early kick detection. The third part discusses the experimental work, describes the methodology for early kick detection, and presents experimental results that show how different influx events affect the mass flow rate, pressure, conductivity, and density of the fluid in the down-hole, and the discussion of the results. The last chapter contains summary of the study and future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, logging has evolved from from simple printf statements to more complex and widely used logging libraries. Today logging information is used to support various development activities such as fixing bugs, analyzing the results of load tests, monitoring performance and transferring knowledge. Recent research has examined how to improve logging practices by informing developers what to log and where to log. Furthermore, the strong dependence on logging has led to the development of logging libraries that have reduced the intricacies of logging, which has resulted in an abundance of log information. Two recent challenges have emerged as modern software systems start to treat logging as a core aspect of their software. In particular, 1) infrastructural challenges have emerged due to the plethora of logging libraries available today and 2) processing challenges have emerged due to the large number of log processing tools that ingest logs and produce useful information from them. In this thesis, we explore these two challenges. We first explore the infrastructural challenges that arise due to the plethora of logging libraries available today. As systems evolve, their logging infrastructure has to evolve (commonly this is done by migrating to new logging libraries). We explore logging library migrations within Apache Software Foundation (ASF) projects. We i find that close to 14% of the pro jects within the ASF migrate their logging libraries at least once. For processing challenges, we explore the different factors which can affect the likelihood of a logging statement changing in the future in four open source systems namely ActiveMQ, Camel, Cloudstack and Liferay. Such changes are likely to negatively impact the log processing tools that must be updated to accommodate such changes. We find that 20%-45% of the logging statements within the four systems are changed at least once. We construct random forest classifiers and Cox models to determine the likelihood of both just-introduced and long-lived logging statements changing in the future. We find that file ownership, developer experience, log density and SLOC are important factors in determining the stability of logging statements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model Driven Engineering uses the principle that code can automatically be generated from software models which would potentially save time and cost of development. By this methodology, a systems structure and behaviour can be expressed in more abstract, high level terms without some of the accidental complexity that the use of a general purpose language can bring. Models are the actual implementation of the system unlike in traditional software development where models are often used for documentation purposes only. However once the code is generated from the model, testing and debugging activities tend to happen on the code level and the model is not updated. We believe that monitoring on the model level could potentially facilitate quality assurance activities as the errors are detected in the early phase of development. In this thesis, we create a Monitoring Configuration for an open source model driven engineering tool called PapyrusRT in Eclipse. We support the run-time monitoring of UML-RT elements with a tracing tool called LTTng. We annotate the model with monitoring information to be used by the code generator for adding tracepoint statements for the corresponding elements. We provide the option of a timing specification to discover latency errors on the model. We validate the results by creating and tracing real time models in PapyrusRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network security monitoring remains a challenge. As global networks scale up, in terms of traffic, volume and speed, effective attribution of cyber attacks is increasingly difficult. The problem is compounded by a combination of other factors, including the architecture of the Internet, multi-stage attacks and increasing volumes of nonproductive traffic. This paper proposes to shift the focus of security monitoring from the source to the target. Simply put, resources devoted to detection and attribution should be redeployed to efficiently monitor for targeting and prevention of attacks. The effort of detection should aim to determine whether a node is under attack, and if so, effectively prevent the attack. This paper contributes by systematically reviewing the structural, operational and legal reasons underlying this argument, and presents empirical evidence to support a shift away from attribution to favour of a target-centric monitoring approach. A carefully deployed set of experiments are presented and a detailed analysis of the results is achieved.