983 resultados para Materials - Testing
Resumo:
Concurrent programs are hard to test due to the inherent nondeterminism. This paper presents a method and tool support for testing concurrent Java components. Too[ support is offered through ConAn (Concurrency Analyser), a too] for generating drivers for unit testing Java classes that are used in a multithreaded context. To obtain adequate controllability over the interactions between Java threads, the generated driver contains threads that are synchronized by a clock. The driver automatically executes the calls in the test sequence in the prescribed order and compares the outputs against the expected outputs specified in the test sequence. The method and tool are illustrated in detail on an asymmetric producer-consumer monitor. Their application to testing over 20 concurrent components, a number of which are sourced from industry and were found to contain faults, is presented and discussed.
Resumo:
Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.
Resumo:
A polymer based on a blend of starch and Bionolle(TM) has been prepared and tested for biodegradation in compost. The polymer was completely mineralised to carbon dioxide in 45 days. The potential toxicity of the polymer was tested against the earthworm Eisenia fetida using a modification of the American Standard for Testing Materials E1976-97. The earthworms were exposed to 30 g of the polymer for 28 days and changes in weight recorded. In addition, the polymer was firstly degraded by the compost and the worms exposed to the breakdown products for 28 days. Differences in weight were also recorded. In each case the production of juveniles was noted and all earthworms were examined for pathology. The results obtained were processed statistically using a t-test. The number of juveniles, produced from the breakdown products, was highly significant (P < 0.001) when compared to the earthworms added to the intact polymer. There was a definitely significant difference (P < 0.01, t = 3.25) in change in weight between the earthworms that were exposed to the polymer directly and those that were exposed to the breakdown products. There was no indication of any pathology of any earthworms. The polymer is considered safe for this species. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the material's hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite widespread awareness that children with Down syndrome are particularly susceptible to hearing pathologies, the audiological status of students with Down syndrome in special schools is all too often unknown. Unfortunately, hearing screening for this population is unable to rely on standard, behavioural test batteries. To facilitate future improvements in screening protocols, this study investigated the results of tympanometry and transient evoked otoacoustic emission (TEOAE) testing for a group of children with Down syndrome. Assessments were not conducted in the artificial context of a clinic or laboratory, but within the school environment. Outcomes are reported for 27 subjects with a mean age of 10 years 5 months (SD = 4;11). Tympanometry testing was failed in at least one ear by 41.7% of subjects, while a failure rate of 81.5% of subjects was observed for TEOAE testing. Therefore, it is concluded that immediate review of hearing screening programs for students with Down syndrome is highly advisable.
Resumo:
Liberal-Institutionalism and Structural Realism expectations about international organizations are confronted by looking at if and how US-controlled international aid is granted, and particularly if it is related or not to political affinity and to United Nations Security Council (UNSC) non-permanent membership. A preliminary assessment suggests that these relations only hold for the period of the Cold War, and, even then, only when UNSC non-permanent membership is in years in which the Security Council was deemed very important.
Resumo:
Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI's code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper presents a generic model for language-independent reverse engineering of graphical user interface based applications, and we explore the integration of model-based testing techniques in our approach, thus allowing us to perform fault detection. A prototype tool has been constructed, which is already capable of deriving and testing a user interface behavioral model of applications written in Java/Swing.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.