998 resultados para Mass Movements
Resumo:
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.
Resumo:
Recent studies show that the composition of fingerprint residue varies significantly from the same donor as well as between donors. This variability is a major drawback in latent print dating issues. This study aimed, therefore, at the definition of a parameter that is less variable from print to print, using a ratio of peak area of a target compound degrading over time divided by the summed area of peaks of more stable compounds also found in latent print residues.Gas chromatography-mass spectrometry (GC/MS) analysis of the initial lipid composition of latent prints identifies four main classes of compounds that can be used in the definition of an aging parameter: fatty acids, sterols, sterol precursors, and wax esters (WEs). Although the entities composing the first three groups are quite well known, those composing WEs are poorly reported. Therefore, the first step of the present work was to identify WE compounds present in latent print residues deposited by different donors. Of 29 WEs recorded in the chromatograms, seven were observed in the majority of samples.The identified WE compounds were subsequently used in the definition of ratios in combination with squalene and cholesterol to reduce the variability of the initial composition between latent print residues from different persons and more particularly from the same person. Finally, the influence of a latent print enhancement process on the initial composition was studied by analyzing traces after treatment with magnetic powder, 1,2-indanedione, and cyanoacrylate.
Resumo:
Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).
Resumo:
Background: The ratio of the rates of non-synonymous and synonymous substitution (d(N)/d(S)) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, d(N)/d(S) should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As N-e is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and d(N)/d(S) is consistently observed is conflicting. Results: Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to d(N)/d(S), the ratio of radical to conservative amino acid substitutions (K-r/K-c) correlates positively with body mass. Conclusions: Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of d(N)/d(S) and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric.
Resumo:
Conventional methods are sometimes insufficient to identify human bacterial pathogens, and alternative techniques, often molecular, are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified with a valid score 45.9% of 410 clinical isolates from 207 different difficult-to-identify species having required 16S rRNA gene sequencing. MALDI-TOF MS might represent an alternative to 16S rRNA gene sequencing.
Resumo:
The early-age thermal development of structural mass concrete elements has a significant impact on the future durability and longevity of the elements. If the heat of hydration is not controlled, the elements may be susceptible to thermal cracking and damage from delayed ettringite formation. In the Phase I study, the research team reviewed published literature and current specifications on mass concrete. In addition, the team observed construction and reviewed thermal data from the westbound (WB) I-80 Missouri River Bridge. Finally, the researchers conducted an initial investigation of the thermal analysis software programs ConcreteWorks and 4C-Temp&Stress. The Phase II study is aimed at developing guidelines for the design and construction of mass concrete placements associated with large bridge foundations. This phase included an additional review of published literature and a more in-depth investigation of current mass concrete specifications. In addition, the mass concrete construction of two bridges, the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge, was documented. An investigation was conducted of the theory and application of 4C-Temp&Stress. ConcreteWorks and 4C-Temp&Stress were calibrated with thermal data recorded for the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge. ConcreteWorks and 4C-Temp&Stress were further verified by means of a sensitivity study. Finally, conclusions and recommendations were developed, as included in this report.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
Following the success of the first round table in 2001, the Swiss Proteomic Society has organized two additional specific events during its last two meetings: a proteomic application exercise in 2002 and a round table in 2003. Such events have as their main objective to bring together, around a challenging topic in mass spectrometry, two groups of specialists, those who develop and commercialize mass spectrometry equipment and software, and expert MS users for peptidomics and proteomics studies. The first round table (Geneva, 2001) entitled "Challenges in Mass Spectrometry" was supported by brief oral presentations that stressed critical questions in the field of MS development or applications (Stöcklin and Binz, Proteomics 2002, 2, 825-827). Topics such as (i) direct analysis of complex biological samples, (ii) status and perspectives for MS investigations of noncovalent peptide-ligant interactions; (iii) is it more appropriate to have complementary instruments rather than a universal equipment, (iv) standardization and improvement of the MS signals for protein identification, (v) what would be the new generation of equipment and finally (vi) how to keep hardware and software adapted to MS up-to-date and accessible to all. For the SPS'02 meeting (Lausanne, 2002), a full session alternative event "Proteomic Application Exercise" was proposed. Two different samples were prepared and sent to the different participants: 100 micro g of snake venom (a complex mixture of peptides and proteins) and 10-20 micro g of almost pure recombinant polypeptide derived from the shrimp Penaeus vannamei carrying an heterogeneous post-translational modification (PTM). Among the 15 participants that received the samples blind, eight returned results and most of them were asked to present their results emphasizing the strategy, the manpower and the instrumentation used during the congress (Binz et. al., Proteomics 2003, 3, 1562-1566). It appeared that for the snake venom extract, the quality of the results was not particularly dependant on the strategy used, as all approaches allowed Lication of identification of a certain number of protein families. The genus of the snake was identified in most cases, but the species was ambiguous. Surprisingly, the precise identification of the recombinant almost pure polypeptides appeared to be much more complicated than expected as only one group reported the full sequence. Finally the SPS'03 meeting reported here included a round table on the difficult and challenging task of "Quantification by Mass Spectrometry", a discussion sustained by four selected oral presentations on the use of stable isotopes, electrospray ionization versus matrix-assisted laser desorption/ionization approaches to quantify peptides and proteins in biological fluids, the handling of differential two-dimensional liquid chromatography tandem mass spectrometry data resulting from high throughput experiments, and the quantitative analysis of PTMs. During these three events at the SPS meetings, the impressive quality and quantity of exchanges between the developers and providers of mass spectrometry equipment and software, expert users and the audience, were a key element for the success of these fruitful events and will have definitively paved the way for future round tables and challenging exercises at SPS meetings.
Resumo:
A simple method using liquid chromatography-linear ion trap mass spectrometry for simultaneous determination of testosterone glucuronide (TG), testosterone sulfate (TS), epitestosterone glucuronide (EG) and epitestosterone sulfate (ES) in urine samples was developed. For validation purposes, a urine containing no detectable amount of TG, TS and EG was selected and fortified with steroid conjugate standards. Quantification was performed using deuterated testosterone conjugates to correct for ion suppression/enhancement during ESI. Assay validation was performed in terms of lower limit of detection (1-3ng/mL), recovery (89-101%), intraday precision (2.0-6.8%), interday precision (3.4-9.6%) and accuracy (101-103%). Application of the method to short-term stability testing of urine samples at temperature ranging from 4 to 37 degrees C during a time-storage of a week lead to the conclusion that addition of sodium azide (10mg/mL) is required for preservation of the analytes.
Resumo:
The capabilities of a high-resolution (HR), accurate mass spectrometer (Exactive-MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50,000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive-MS was compared with that of a triple quadrupole mass spectrometer (TQ-MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole-N-oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR-MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR-MS offers several benefits over TQ-MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR-MS delivers comparable results to TQ-MS in routine quantitative drug analyses. Considering the advantages of HR-MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
The objective of this work was to improve the mass rearing technique of Euschistus heros in laboratory. Nymphs and adults were reared at densities 100, 200, 300 and 400 eggs per Petri dish (9 cm diameter), and at 50, 100, 150 and 200 couples per rearing cages (900 mL), respectively. Survival rate of immature stages and survivorship and reproduction of adults were determinated. Survivorship of nymph to adult was the highest (89%) at density 100 eggs per dish. Adult survivorship was independent of density, and 100 couples per cage were the best to improve quality of the produced progeny. In these conditions, fecundity was 160.8±9.28 eggs per female, and a total of 8,950±456 eggs per cage per month was produced. Two hundred couples per cage showed a negative effect on reproduction, which decreased to 65%. With this technique, a colony of 35 cages with 100 couples per cage yields about 313.3 thousands eggs per month, which is enough to supply the egg parasitoid Telenomus podisi to colonize about 35 ha of soybean field.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: ̴17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.