950 resultados para Macro releases
Resumo:
The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.
Resumo:
Finnish forest industry is in the middle of a radical change. Deepening recession and the falling demand of woodworking industry´s traditional products have forced also sawmilling industry to find new and more fertile solutions to improve their operational preconditions. In recent years, the role of bioenergy production has often been highlighted as a part of sawmills´ business repertoire. Sawmilling produces naturally a lot of by-products (e.g. bark, sawdust, chips) which could be exploited more effectively in energy production, and this would bring more incomes or maybe even create new business opportunities for sawmills. Production of bioenergy is also supported by government´s climate and energy policies favouring renewable energy sources, public financial subsidies, and soaring prices of fossil fuels. Also the decreasing production of domestic pulp and paper industry releases a fair amount of sawmills´ by-products for other uses. However, bioenergy production as a part of sawmills´ by-product utilization has been so far researched very little from a managerial point of view. The purpose of this study was to explore the relative significance of the main bioenergy-related processes, resources and factors at Finnish independent industrial sawmills including partnerships, cooperation, customers relationships and investments, and also the future perspectives of bioenergy business at these sawmills with the help of two resource-based approaches (resource-based view, natural-resource-based view). Data of the study comprised of secondary data (e.g. literature), and primary data which was attracted from interviews directed to sawmill managers (or equivalent persons in charge of decisions regarding bioenergy production at sawmill). While a literature review and the Delphi method with two questionnaires were utilized as the methods of the study. According to the results of the study, the most significant processes related to the value chain of bioenergy business are connected to raw material availability and procurement, and customer relationships management. In addition to raw material and services, the most significant resources included factory and machinery, personnel, collaboration, and geographic location. Long-term cooperation deals were clearly valued as the most significant form of collaboration, and especially in processes connected to raw material procurement. Study results also revealed that factors related to demand, subsidies and prices had highest importance in connection with sawmills´ future bioenergy business. However, majority of the respondents required that certain preconditions connected to the above-mentioned factors should be fulfilled before they will continue their bioenergy-related investments. Generally, the answers showed a wide divergence of opinions among the respondents which may refer to sawmills´ different emphases and expectations concerning bioenergy. In other words, bioenergy is still perceived as a quite novel and risky area of business at Finnish independent industrial sawmills. These results indicate that the massive expansion of bioenergy business at private sawmills in Finland is not a self-evident truth. The blocking barriers seem to be connected mainly to demand of bioenergy and money. Respondents´ answers disseminated a growing dissatisfaction towards the policies of authorities, which don´t treat equally sawmill-based bioenergy compared to other forms of bioenergy. This proposition was boiled down in a sawmill manager´s comment: “There is a lot of bioenergy available, if they just want to make use of it.” It seems that the positive effects of government´s policies favouring the renewables are not taking effect at private sawmills. However, as there anyway seems to be a lot of potential connected to emerging bioenergy business at Finnish independent industrial sawmills, there is also a clear need for more profound future studies over this topic.
Resumo:
We examine the potential for adaptation to climate change in Indian forests, and derive the macroeconomic implications of forest impacts and adaptation in India. The study is conducted by integrating results from the dynamic global vegetation model IBIS and the computable general equilibrium model GRACE-IN, which estimates macroeconomic implications for six zones of India. By comparing a reference scenario without climate change with a climate impact scenario based on the IPCC A2-scenario, we find major variations in the pattern of change across zones. Biomass stock increases in all zones but the Central zone. The increase in biomass growth is smaller, and declines in one more zone, South zone, despite higher stock. In the four zones with increases in biomass growth, harvest increases by only approximately 1/3 of the change in biomass growth. This is due to two market effects of increased biomass growth. One is that an increase in biomass growth encourages more harvest given other things being equal. The other is that more harvest leads to higher supply of timber, which lowers market prices. As a result, also the rent on forested land decreases. The lower prices and rent discourage more harvest even though they may induce higher demand, which increases the pressure on harvest. In a less perfect world than the model describes these two effects may contribute to an increase in the risk of deforestation because of higher biomass growth. Furthermore, higher harvest demands more labor and capital input in the forestry sector. Given total supply of labor and capital, this increases the cost of production in all the other sectors, although very little indeed. Forestry dependent communities with declining biomass growth may, however, experience local unemployment as a result.
Resumo:
An asymptotically correct analysis is developed for Macro Fiber Composite unit cell using Variational Asymptotic Method (VAM). VAM splits the 3D nonlinear problem into two parts: A 1D nonlinear problem along the length of the fiber and a linear 2D cross-sectional problem. Closed form solutions are obtained for the 2D problem which are in terms of 1D parameters.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.
Resumo:
Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.
Resumo:
This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.
Resumo:
A model representing the vibrations of a coupled fluid-solid structure is considered. This structure consists of a tube bundle immersed in a slightly compressible fluid. Assuming periodic distribution of tubes, this article describes the asymptotic nature of the vibration frequencies when the number of tubes is large. Our investigation shows that classical homogenization of the problem is not sufficient for this purpose. Indeed, our end result proves that the limit spectrum consists of three parts: the macro-part which comes from homogenization, the micro-part and the boundary layer part. The last two components are new. We describe in detail both macro- and micro-parts using the so-called Bloch wave homogenization method. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.
Resumo:
Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs
Resumo:
A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an �ultrasonic nuclei manipulator (UNM)�. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.
Resumo:
MEMS resonators have potential applications in the areas of RF-MEMS, clock oscillators, ultrasound transducers, etc. The important characteristics of a resonator are its resonant frequency and Q-factor (a measure of damping). Usually large damping in macro structures makes it difficult to excite and measure their higher modes. In contrast, MEMS resonators seem amenable to excitation in higher modes. In this paper, 28 modes of vibration of an electrothermal actuator are experimentally captured–perhaps the highest number of modes experimentally captured so far. We verify these modes with FEM simulations and report that all the measured frequencies are within 5% of theoretically predicted values.
Resumo:
Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.