929 resultados para MESOPOROUS CO3O4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A catalyst of great interest to the scientific community tries to unite the structure of ordered pore diameter from mesoporous materials with the properties of stability and acid activity to microporous zeolites. Thus a large number of materials was developed in the past decades, which although being reported as zeolites intrinsically they fail to comply with some relevant characteristics to zeolites, and recently were named zeolitic materials of high accessibility. Among the various synthesis strategies employed, the present research approaches the synthesis methods of crystallization of silanized protozeolitic units and the method of protozeolitic units molded around surfactant micelles, in order for get materials defined as hierarchical zeolites and micro-mesoporous hybrid materials, respectively. As goal BEA/MCM-41 hybrid catalysts with bimodal pore structure formed by nuclei of zeolite Beta and cationic surfactant cetyltrimethylammonium were developed. As also was successfully synthesized the hierarchical Beta zeolite having a secondary porosity, in addition to the typical and uniform zeolite micropores. Both catalysts were applied in reactions of catalytic cracking of high density polyethylene (HDPE), to evaluate its properties in catalytic activity, aiming at the recycling of waste plastics to obtain high value-added raw materials and fuels. The BEA/MCM-41 hybrid materials with 0 days of pre-crystallization did not show enough properties for use in catalytic cracking reactions, but they showed superior catalytic properties compared to those ordered mesoporous materials of Al-MCM-41 type. The structure of Beta zeolite with hierarchical porosity leads the accessibility of HDPE bulky molecules to active centers, due to high external area. And provides higher conversion to hydrocarbons in the gasoline range, especially olefins which have great interest in the petrochemical industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical recycling of polyolefins has been the focus of increasing attention owing potential application as a fuel and as source chemicals. The use of plastic waste contributes to the solution of pollution problems.The use of catalysts can enhance the thermal degradation of synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass spectrometry (MS) combined techniques. This work aims to propose alternatives to the chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15 and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl and water. As structure template was used Pluronic P123. The syntheses were accomplished during the period of three days. The best calcination conditions for removal of the organic template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron microscopy (SEM) was verified that as much the hydrothermal synthesis method as the calcination by TG were promising for the production of mesoporous materials with high degree of hexagonal ordination. The general analysis of the method of Analog Scan was performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high temperatures. Thus, with the results, we observed signs mass/charge more evident and, using the MID method, was obtained curve of evolution of these signals. The addition of catalysis produced a decrease in temperature of polymer degradation proportional to the acidity of the catalyst. The results showed that the mesoporous materials contributed to the formation of compounds of lower molecular weight and higher value in the process of catalytic degradation of LDPE, representing an alternative to chemical recycling of solid waste

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)