997 resultados para MAGNETIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio calculations were conducted to investigate the electronic structures and magnetic properties of fluorinated boron nitride nanotube (F-BNNT). It was found that the chemisorption of F atoms on the B atoms of BNNT can induce spontaneous magnetization, whereas no magnetism can be produced when the B and N atoms are equally fluorinated. This provides a different approach to tune the magnetic properties of BNNTs as well as a synthetic route toward metal-free magnetic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A washer-free Nb nanoSQUID has been developed for measuring magnetization changes from nanoscale objects. The SQUID loop is etched into a 250 nm wide Au/Nb bilayer track and the diameter of the SQUID hole is ~ 70 nm. In the presence of a magnetic field perpendicular to the plane of the SQUID, vortex penetration into the 250 nm wide track can be observed via the critical current–applied field characteristic and the value at which vortex first penetrates is consistent with the theoretical prediction. Upon removing the applied field, the penetrated vortices escape the track and the critical current at zero field is restored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comprehensive analytical subdomain model together with its field solutions for predicting the magnetic field distributions in surface-mounted permanent magnet (PM) machines. The tooth tips and slotting effects during open-circuit, armature reaction, and on-load conditions are considered when deriving the model and developing its solutions. The model derivations and field solutions are extended from a previous model, and can be applied to PM machines with any combinations of slot and pole numbers and any magnetization patterns in the magnets. This model is initially formulated according to Laplace's and Poisson's equations in 2-D polar coordinates by the separation of variables technique in four subdomains, such as magnet, airgap, winding slots, and slot-openings. The field solution of each subdomain is obtained applying the appropriate boundary conditions and interface conditions between every two subdomains, respectively, which can precisely account for the mutual influence between slots. Finite element analysis (FEA) is later deployed to validate the analytical results in a surface-mounted PM machine that has nonoverlapping winding arrangement. For validation purposes, PM machines having 3-slot/2-pole with parallel magnetization and 12-slot/10-pole with either parallel or radial magnetizations are used for comparisons. Computation of global quantities for the motor which include the phase back-EMF and cogging torque is also included. The results indicate that the proposed analytical model can accurately predict the magnetic field distributions in each subdomain and the motor's global quantities, which are in good agreement with those obtained from the FEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigated the magnetic properties of a monocrystalline Fe thin film and of Fe(80 Å)/Cr(t)/Fe(80 Å) tri-layers, with the nonmagnetic metallic Cr spacer layer thickness varying between 9 Å < t < 40 Å. The samples were deposited by the DC Sputtering on Magnesium Oxide (MgO) substrates, with (100) crystal orientation. For this investigation, experimental magneto-optical Kerr effect (MOKE) magnetometry and ferromagnetic resonance (FMR) techniques were employeed. In this case, these techniques allowed us to study the static and dynamical magnetization properties of our tri-layers. The experimental results were interpreted based on the phenomenological model that takes into account the relevant energy terms to the magnetic free energy to describe the system behavior. In the case of the monocrystalline Fe film, we performed an analytical discussion on the magnetization curves and developed a numerical simulation based on the Stoner-Wohlfarth model, that enables the numerical adjustment of the experimental magnetization curves and obtainment of the anisotropy field values. On the other hand, for the tri-layers, we analyzed the existence of bilinear and biquadratic couplings between the magnetizations of adjacent ferromagnetic layers from measurements of magnetization curves. With the FMR fields and line width angular dependencies, information on the anisotropy in three layers was obtained and the effects of different magnetic relaxation mechanisms were evidenced. It was also possible to observe the dependence of the epitaxy of the multilayers with growth and sputtering parameters. Additionally it was developed the technique of AC magnetic susceptibility in order to obtain further information during the investigation of magnetic thin films

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, one of the topics that attracts interest of the scientific community is the understanding of magnetic properties of magnetic systems with reduced dimensions, in particular, ferromagnetic thin films. In this case, the comprehension and control of these properties, as well as the development of routes to obtain them, are crucial issues in many aspects of current and future technologies for storage and transmission of information in the electro-electronic industry. There are several materials that exhibit soft magnetic properties, and we highlight the amorphous alloys and that ones obtained by partial crystallization, so-called nanocrystalline materials. The production of these alloys as magnetic ribbons is very common in scientific and technological area, but there are just a few works related to the production of these alloys as thin films. In this work, we studied the quasi-static magnetic properties of ferromagnetic thin films based on FeCuNbSiB in a wide range of thicknesses, from 20 to 500 nm, produced by sputtering. In particular, after the structural characterization performed via X-ray diffraction, the magnetic properties of the sets of samples were investigated using experimental magnetization curve, obtained using a vibrating sample magnetometer, as well as through theoretical curves obtained by theoretical modeling and numerical computation. The modeling process is based on the Stoner Wohlfarth model applied to three dimensions, and adds some energy terms, using as reference experimental results of magnetization. In this case, from the comparison between theoretical and experimental results and the analysis of the constant anisotropy behavior as a function of film thickness, we aim to obtain further information on the magnetization process of the samples, to identify routes for the production of thin films and develop a theoretical to films to use it, in the future, in the obtainment of the theoretical curves of some magnetic measurements, such as magnetoimpedance and magnetoresistance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study magnetic interface roughness in F/AF bilayers. Two kinds of roughness were considered. The first one consists of isolated defects that divide the substrate in two regions, each one with an AF sub-lattice. The interface exchange coupling is considered uniform and presents a sudden change in the defects line, favoring Neel wall nucleation. Our results show the interface field dependence of the threshold thickness for the reorientation of the magnetization in the ferromagnetic film. Angular profiles show the relaxation of the magnetization, from Neel wall, at the interface, to reoriented state, at the surface. External magnetic field, perpendicular to the easy axis of the substrate, favors the reoriented state. Depending, of the external magnetic field intensity, parallel to the easy axis of the AF, the magnetization profile at surface can be parallel or perpendicular to the field direction. The second one treats of distributed deffects, periodically. The shape hysteresis curves, exchange bias and coercivity were characterized by interface field intensity and roughness pattern. Our results show that dipolar effects decrease the exchange bias and coercivity