869 resultados para Loop cancellation
Resumo:
Using the one-loop Coleman-Weinberg effective potential, we derive a general analytic expression for all the derivatives of the effective potential with respect to any number of classical scalar fields. The result is valid for a renormalisable theory in four dimensions with any number of scalars, fermions or gauge bosons. This result corresponds to the zero-external momentum contribution to a general one-loop diagram with N scalar external legs. We illustrate the use of the general result in two simple scalar singlet extensions of the Standard Model, to obtain the dominant contributions to the triple couplings of light scalar particles under the zero external momentum approximation.
Resumo:
Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.
Resumo:
Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.
Resumo:
The objective of this article is to reflect on the video art work in its loop production to perceive the possibility of it being received as an open work. In order to contextualize this reflection the text is anchored in the concept of image-crystal from Gilles Deleuze. For the purpose of empirically explore theoretical concepts such as video art, open work and image-crystal it was produced a practical project of video art that intends to reflect on the notion of time in a context of a loop exhibition. Therefore this project aims to motivate the reflection on the loop as a mechanism to contour the ephemeral character of video art and, at the same time, it seeks to emphasize questions about the element of multiplicity and plurality in art. It is a scientific and artistic project in which the practical component supports the dialectic between theory and practice, action and reflection. In this sense, based on the video entitled "The Walk" this article demonstrates how the theoretical concepts were used to support the artistic creation. Finally the conclusions sustain that the work of video art, when presented in loop, is a creative and expository strategy which encourages multiple interpretations that vary according to the narrative, the context in which it takes place and the attitude and the background of the spectator.
Resumo:
Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG. Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.
Resumo:
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator’s Chern number is the phase-winding number of the mass gap terms on the loop.We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field’s vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Resumo:
Abstract. The aim of the study was to know the genetic characteristic and polymorphysm of Indonesian local ducks including Magelang, Tegal, Mojosari, Bali and Alabio duck based on Single Nucleotide Polymorphism (SNP) analysis in D-loop region mtDNA. The long term aim was to set the spesific genetic marker based on SNP D-loop region mtDNA which could differentiate local ducks in Indonesia. In the future, it could be used as selection tool for local duck conservation, and refinement strategy as well as the improvement of genetic quality by utilizing the available native duck germplasm. There were 20 ducks for each duck population and were taken 3 ml of its blood as sample. DNA Isolation Kit high pure PCR template preparation (Geneaid) was uded for Genome DNA isolation. Amplification with PCR technique used primer DL-AnasPF (L56) as forward and DL-AnasPR (H773) as reverse. Next, PCR product or amplicon were sequenced. Sequence result were analyzed with SNP technique and observed the similarity and difference of its nucleotide sequence between individual and population. The result of the study showed that genome DNA from local duck in Indonesia was successfully isolated. DNA fragment of 718 bp was amplified with primer pair of DL-AnasPF and DL-AnasPR. Nucleotide sequence was 469 nt and analyzed with SNP technique. It was compared with standard nucleotide sequence of Anas platyrhynchos (HM010684.1) in Gen Bank. The result of nucleotide sequence similarity percentage was 99.68±0.56%. Single Nucleotide Polymorphism D-loop region mtDNA Indonesian local duck was 0.32±0.56%.  Some SNP was found in Magelang duck C (Klawu blorok), F (Cemani black), G (Gambiran), H (Jarakan kalung), I (Jowo plain) and K (Plain white) also Tegal duck 8, 1, 2, 5, 2, 8 and 2 SNP respectively. It could be concluded that polymorphic genetic characteristic similarity were existed in Indonesia local duck populations which was shown by its big standard deviation SNP in D-loop region mtDNA. Magelang duck with different feather color relatively more polymorphic to another local duck in Indonesia. Single Nucleotide Polymorphism which was achieved could be used as genetic marker that differentiate genetic characteristic of Indonesian local ducks.Key words: genetic characteristic, local duck, Single Nucleotide Polymorphism (SNP), D-loop mtDNAAbstrak. Penelitian ini bertujuan untuk mengetahui karakteristik genetik dan polimorfisme itik lokal Indonesia yaitu itik Magelang, Tegal, Mojosari, Bali dan Alabio berdasarkan analisis Single Nucleotide Polymorphism (SNP) daerah D-loop mtDNA. Tujuan jangka panjangnya adalah menetapkan marker atau penanda genetik berdasarkan SNP daerah D-loop mtDNA spesifik yang dapat membedakan itik-itik lokal yang ada di Indonesia. Selanjutnya digunakan sebagai alat bantu seleksi untuk konservasi, pembibitan dan pengembangbiakan itik lokal. Populasi masing-masing jenis itik lokal yang digunakan sebanyak 20 ekor untuk diambil 3 ml sampel darahnya. Isolasi DNA genom menggunakan DNA Isolation Kithigh pure PCR template preparation (Geneaid). Amplifikasi dengan teknik PCR menggunakan pasangan primer DL-AnasPF (L56) sebagai forward dan DL-AnasPR (H773) sebagai reverse. Produk PCR atau amplikon yang diperoleh disekuensing. Hasil sekuensing dianalisis dengan teknik SNP dan diamati kesamaan dan perbedaan urutan nukleotida antar individu itik dan antar populasi.  Hasil penelitian menunjukkan bahwa DNA genom dari itik lokal di Indonesia berhasil diisolasi. Amplifikasi dengan teknik PCR berhasil memperoleh fragmen berukuran 718 bp. Urutan nukleotida hasil sekuensing sebesar 469 nt dianalisis dengan teknik SNP dan dibandingkan dengan urutan nukleotida standar dari itik Anas platyrhynchos (HM010684.1) yang ada di Gen Bank, diperoleh persentase kesamaan urutan nukleotid sebesar 99,68±0,56%. Single Nucleotide Polymorphism daerah D-loop mtDNA pada itik lokal di Indonesia sebesar 0,32±0,56%. Sejumlah SNP ditemukan pada itik Magelang C (Klawu blorok), F (Hitam cemani), G (Gambiran), H (Jarakan kalung), I (Jowo polos) dan K (Putih polos) serta itik Tegal masing-masing 8, 1, 2, 5, 2, 8 serta 2 SNP. Kesimpulan dari penelitian ini adalah terdapat karakteristik genetik yang polimorfik pada populasi itik lokal di Indonesia, ditunjukkan dengan adanya simpang baku SNP pada daerah D-loop mtDNA yang relatif besar. Itik Magelang dengan warna bulu yang berbeda relatif lebih polimorfik dibandingkan dengan itik lokal lainnya di Indonesia. Single Nucleotide Polymorphism yang diperoleh dapat digunakan sebagai penanda genetik yang dapat membedakan karakteristik genetik yang dimiliki oleh itik lokal di Indonesia.Kata kunci: karakteristik genetik, itik lokal, Single NucleotidePolymorphism (SNP), D-loop mtDNA
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.
Resumo:
Research is often characterised as the search for new ideas and understanding. The language of this view privileges the cognitive and intellectual aspects of discovery. However, in the research process theoretical claims are usually evaluated in practice and, indeed, the observations and experiences of practical circumstances often lead to new research questions. This feedback loop between speculation and experimentation is fundamental to research in many disciplines, and is also appropriate for research in the creative arts. In this chapter we will examine how our creative desire for artistic expressivity results in interplay between actions and ideas that direct the development of techniques and approaches for our audio/visual live-coding activities.
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.