719 resultados para Logic fuzzy
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them
Resumo:
O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados
Resumo:
A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
Resumo:
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets
Resumo:
Symbolic Data Analysis (SDA) main aims to provide tools for reducing large databases to extract knowledge and provide techniques to describe the unit of such data in complex units, as such, interval or histogram. The objective of this work is to extend classical clustering methods for symbolic interval data based on interval-based distance. The main advantage of using an interval-based distance for interval-based data lies on the fact that it preserves the underlying imprecision on intervals which is usually lost when real-valued distances are applied. This work includes an approach allow existing indices to be adapted to interval context. The proposed methods with interval-based distances are compared with distances punctual existing literature through experiments with simulated data and real data interval