765 resultados para LYAPUNOV FUNCTIONALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical functional, such as the mean or the median, is called elicitable if there is a scoring function or loss function such that the correct forecast of the functional is the unique minimizer of the expected score. Such scoring functions are called strictly consistent for the functional. The elicitability of a functional opens the possibility to compare competing forecasts and to rank them in terms of their realized scores. In this paper, we explore the notion of elicitability for multi-dimensional functionals and give both necessary and sufficient conditions for strictly consistent scoring functions. We cover the case of functionals with elicitable components, but we also show that one-dimensional functionals that are not elicitable can be a component of a higher order elicitable functional. In the case of the variance, this is a known result. However, an important result of this paper is that spectral risk measures with a spectral measure with finite support are jointly elicitable if one adds the “correct” quantiles. A direct consequence of applied interest is that the pair (Value at Risk, Expected Shortfall) is jointly elicitable under mild conditions that are usually fulfilled in risk management applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the partial regularity of minimizers of energy functionals such as (1)/(p)integral(Omega)[sigma(u)dA(p) + (1)/(2)delu(2p)]dx, where u is a map from a domain Omega is an element of R-n into the m-dimensional unit sphere of Rm+1 and A is a differential one-form in Omega.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved.