792 resultados para LUGOLS IODINE VILI
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Distributions of halogens (Cl, Br and I) in interstitial waters from sediments containing methane hydrate and in water of the hydrate itself are presented. High concentrations of halogens do not occur in interstitial waters from sediments that contain gas hydrates. The main reason for their low concentrations is the poverty of organic matter in sediments.
Resumo:
The atmospheric chemistry of iodine and bromine in polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine is emitted from biological communities hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial-interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arctic and better understand potential links to sea ice. We find that bromine enrichment (relative to sea salt content) and iodine concentrations in polar ice do vary seasonally in Arctic snow and Antarctic ice and we relate such variability to satellite-based observations of tropospheric halogen concentrations. Peaks of bromine enrichment in Arctic snow and Antarctic ice occur in spring and summer, when sunlight is present. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions.
Resumo:
The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records (Zachos et al., 2001, doi:10.1126/science.1059412; Lear et al., 2000, doi:10.1126/science.287.5451.269; Coxall et al., 2005, doi:10.1038/nature03135; Pekar et al., 2005; doi:10.1130/B25486.1; Strand et al., 2003, doi:10.1016/S0031-0182(03)00396-1) supported by climate modelling (DeConto and Pollard, 2003, doi:10.1038/nature01290) indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy (Coxall et al., 2005, doi:10.1038/nature03135; Tripati et al., 2005, doi:10.1038/nature03874; Wolf-Welling et al., 1996, doi:10.2973/odp.proc.sr.151.139.1996; Moran et al., 2006, doi:10.1038/nature04800). Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented (Winkler et al., 2002, doi:10.1007/s005310100199), at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.
Resumo:
"June 23, 1950."
Resumo:
Mode of access: Internet.
Resumo:
"Contract No. AT(40-1)-Gen-33."
Resumo:
Manuscript completed September 1978, published October 1978.
Resumo:
Inaug.-diss.--Hannover, 1912.
Resumo:
Inaug.-diss. - Hannover, 1912.
Resumo:
Inaug.-diss. - Hannover, 1911.
Resumo:
Mode of access: Internet.