876 resultados para LOCAL SCALE-INVARIANCE
Resumo:
Power distance can produce contextual effects that surpass the cultural level of analysis, allowing predicting how the assimilation of these cultural values impacts individuals motivations to attain power positions and behaviors towards authorities. Power distance value can be conceived both at a micro and macro level of analysis. However existing measures used at a cultural level have been the object of several critics, and others applied at the individual level need further study in terms of their psychometric properties. This article presents the main psychometric properties of the Earley and Erez (1997) Power Differential Scale. This scale measures the acceptability of power and status differences both at micro and macro level. Two studies analyse the scale’s construct validity and its factorial invariance across groups of participants (Study 1); and its predictive validity at an individual level (Study 2). The results obtained support the proposed unidimensionality of the scale. Furthermore, it demonstrated predictive power by showing the role of power distance in the prediction of individual motivations to attain power and to respond to power situations using withdrawal or confrontational strategies. Future research is discussed, specifically the impact of power differential construct in individual attitudes and behavior.
Resumo:
A subfilter-scale (SFS) stress model is developed for large-eddy simulations (LES) and is tested on various benchmark problems in both wall-resolved and wall-modelled LES. The basic ingredients of the proposed model are the model length-scale, and the model parameter. The model length-scale is defined as a fraction of the integral scale of the flow, decoupled from the grid. The portion of the resolved scales (LES resolution) appears as a user-defined model parameter, an advantage that the user decides the LES resolution. The model parameter is determined based on a measure of LES resolution, the SFS activity. The user decides a value for the SFS activity (based on the affordable computational budget and expected accuracy), and the model parameter is calculated dynamically. Depending on how the SFS activity is enforced, two SFS models are proposed. In one approach the user assigns the global (volume averaged) contribution of SFS to the transport (global model), while in the second model (local model), SFS activity is decided locally (locally averaged). The models are tested on isotropic turbulence, channel flow, backward-facing step and separating boundary layer. In wall-resolved LES, both global and local models perform quite accurately. Due to their near-wall behaviour, they result in accurate prediction of the flow on coarse grids. The backward-facing step also highlights the advantage of decoupling the model length-scale from the mesh. Despite the sharply refined grid near the step, the proposed SFS models yield a smooth, while physically consistent filter-width distribution, which minimizes errors when grid discontinuity is present. Finally the model application is extended to wall-modelled LES and is tested on channel flow and separating boundary layer. Given the coarse resolution used in wall-modelled LES, near the wall most of the eddies become SFS and SFS activity is required to be locally increased. The results are in very good agreement with the data for the channel. Errors in the prediction of separation and reattachment are observed in the separated flow, that are somewhat improved with some modifications to the wall-layer model.
Resumo:
In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.
Resumo:
Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures
Resumo:
A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of-reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced-assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.
Resumo:
A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of- reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced- assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.
Resumo:
The AgroMed International Conference 2016 aims to discuss the current land use changes, with a particular interest on farm and land system dynamics, also considering the possible competition with other uses (urban and/or natural land uses). It is focused on “Farm and land system dynamics in the Mediterranean basin: integrating spatial scales, from the local to the global one”. Teresa Pinto Correia presented H2020 project SALSA “Small farms, small food businesses and sustainable food security”
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.