768 resultados para Ionic Liquid. tetrafluoroborate. 1-methylimidazole. hydrogen production
Resumo:
Defensins are natural endogenous antimicrobial peptides with potent anti-HIV activity and immuno-modulatory effects. We recently demonstrated that immature dendritic cells (DC) produce α-defensins1-3 and that α-defensins1-3 modulate DC generation and maturation. Since DC-HIV interaction plays a critical role during the first steps of HIV infection, we investigated the possible impact of α-defensins1-3 production by DC on disease progression.
Resumo:
OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.
Resumo:
We use the method of Bogolubov transformations to compute the rate of pair production by an electric field in (1+1)-dimensional de Sitter space. The results are in agreement with those obtained previously using the instanton methods. This is true even when the size of the instanton is comparable to the size of the de Sitter horizon.
Resumo:
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Resumo:
Defensins are natural endogenous antimicrobial peptides with potent anti-HIV activity and immuno-modulatory effects. We recently demonstrated that immature dendritic cells (DC) produce α-defensins1-3 and that α-defensins1-3 modulate DC generation and maturation. Since DC-HIV interaction plays a critical role during the first steps of HIV infection, we investigated the possible impact of α-defensins1-3 production by DC on disease progression.
Resumo:
Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity.
Resumo:
Nanomaterials with structures in the nanoscale (1 to 100 nm) often have chemical, physical and bioactive characteristics different from those of larger entities of the same material. This is interesting for industry but raises questions about the health of exposed people. However, little is known so far about the exposure of workers to inhalable airborne nanomaterials. We investigated several activities in research laboratories and industry to learn about relevant exposure scenarios. Work process analyses were combined with measurements of airborne particle mass concentrations and number−size distributions. Background levels in research settings were mostly low, while in industrial production, levels were sometimes elevated, especially in halls near busy roads or in the presence of diesel fork lifts without particle filters. Peak levels were found in an industrial setting dealing with powders (up to 80,000 particles/cm³ and up to 15 mg/m³). Mostly low concentrations were found for activities involving liquid applications. However, centrifugation and lyophilization of nanoparticle containing solutions resulted in very high particle number concentrations (up to 300,000 particles/cm³), whereas no increases were seen for the same activities conducted with nanoparticle−free liquids. No significant increases of particle concentrations were found for processes involving nanoparticles bound to surfaces. Also no increases were observed in laboratories that were visualizing properties and structures of small amounts of nanomaterials. Conclusion: When studying exposure scenarios for airborne nanomaterials, the focus should not only be on processes involving nano−powders, but also on processes involving intensively treated nanoparticle−containing liquids. Acknowledgement: We thank Chantal Imhof, MSc and Guillaume Ferraris, MSc for their contributions.
Resumo:
The formation of silicon particles in rf glow discharges has attracted attention due to their effect as a contaminant during film deposition or etching. However, silicon and silicon alloy powders produced by plasma¿enhanced chemical vapor deposition (PECVD) are promising new materials for sintering ceramics, for making nanoscale filters, or for supporting catalytic surfaces. Common characteristics of these powders are their high purity and the easy control of their stoichiometry through the composition of the precursor gas mixture. Plasma parameters also influence their structure. Nanometric powders of silicon¿carbon alloys exhibiting microstructural properties such as large hydrogen content and high surface/volume ratio have been produced in a PECVD reactor using mixtures of silane and methane at low pressure (-1 Torr) and low frequency square¿wave modulated rf power (13.56 MHz). The a¿Si1¿xCx:H powders were obtained from different precursor gas mixtures, from R=0.05 to R=9, where R=[SiH4]/([SiH4]+[CH4]). The structure of the a¿Si1¿xCx:H powder was analyzed by several techniques. The particles appeared agglomerated, with a wide size distribution between 5 and 100 nm. The silane/methane gas mixture determined the vibrational features of these powders in the infrared. Silicon-hydrogen groups were present for every gas composition, whereas carbon¿hydrogen and silicon¿carbon bonds appeared in methane¿rich mixtures (R-0.6). The thermal desorption of hydrogen revealed two main evolutions at about 375 and 660¿°C that were ascribed to hydrogen bonded to silicon and carbon, respectively. The estimated hydrogen atom concentration in the sample was about 50%.
Resumo:
The objective of this study was to obtain genetic marker information in the Gyr breed by analyzing bGH and Pit-1 gene polymorphisms and to verify their association with milk production traits. One sample including 40 Gyr bulls were genotyped at two bGH gene restriction sites (bGH- AluI and bGH-MspI) and at one restriction site in the Pit-1 gene (Pit-1 HinfI). The bGH-MspI(-) allele was favorable for fat milk percentage. The heterozigous Pit-1 HinfI (+/-) bulls were superior for fat milk production, in relation to homozigous Pit-1 HinfI (+/+). The Pit-1 and bGH genes are strong candidates in the dairy cattle QTL search, and zebuine populations are promising samples for this purpose.
Resumo:
Background Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. Results Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. Conclusions Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from enzyme immobilization, the lipase can be used in combination with other enzymes such as phospholipases for gums removal, thus allowing the use of much cheaper, non-refined oils. The possibility to perform degumming and transesterification in a single tank involves a great efficiency increase in the new era of enzymatic biodiesel production at industrial scale.
Resumo:
The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production.
Resumo:
Ydinvoimalaitokset on suunniteltu ja rakennettu niin, että niillä on kyky selviytyä erilaisista käyttöhäiriöistä ja onnettomuuksista ilman laitoksen vahingoittumista sekä väestön ja ympäristön vaarantumista. On erittäin epätodennäköistä, että ydinvoimalaitosonnettomuus etenee reaktorisydämen vaurioitumiseen asti, minkä seurauksena sydänmateriaalien hapettuminen voi tuottaa vetyä. Jäädytyspiirin rikkoutumisen myötä vety saattaa kulkeutua ydinvoimalaitoksen suojarakennukseen, jossa se voi muodostaa palavan seoksen ilman hapen kanssa ja palaa tai jopa räjähtää. Vetypalosta aiheutuvat lämpötila- ja painekuormitukset vaarantavat suojarakennuksen eheyden ja suojarakennuksen sisällä olevien turvajärjestelmien toimivuuden, joten tehokas ja luotettava vedynhallintajärjestelmä on tarpeellinen. Passiivisia autokatalyyttisiä vetyrekombinaattoreita käytetäänyhä useammissa Euroopan ydinvoimaitoksissa vedynhallintaan. Nämä rekombinaattorit poistavat vetyä katalyyttisellä reaktiolla vedyn reagoidessa katalyytin pinnalla hapen kanssa muodostaen vesihöyryä. Rekombinaattorit ovat täysin passiivisiaeivätkä tarvitse ulkoista energiaa tai operaattoritoimintaa käynnistyäkseen taitoimiakseen. Rekombinaattoreiden käyttäytymisen tutkimisellatähdätään niiden toimivuuden selvittämiseen kaikissa mahdollisissa onnettomuustilanteissa, niiden suunnittelun optimoimiseen sekä niiden optimaalisen lukumäärän ja sijainnin määrittämiseen suojarakennuksessa. Suojarakennuksen mallintamiseen käytetään joko keskiarvoistavia ohjelmia (Lumped parameter (LP) code), moniulotteisia virtausmalliohjelmia (Computational Fluid Dynamics, CFD) tai näiden yhdistelmiä. Rekombinaattoreiden mallintaminen on toteutettu näissä ohjelmissa joko kokeellisella, teoreettisella tai yleisellä (eng. Global Approach) mallilla. Tämä diplomityö sisältää tulokset TONUS OD-ohjelman sisältämän Siemens FR90/1-150 rekombinaattorin mallin vedynkulutuksen tarkistuslaskuista ja TONUS OD-ohjelmalla suoritettujen laskujen tulokset Siemens rekombinaattoreiden vuorovaikutuksista. TONUS on CEA:n (Commissariat à 1'En¬ergie Atomique) kehittämä LP (OD) ja CFD -vetyanalyysiohjelma, jota käytetään vedyn jakautumisen, palamisenja detonaation mallintamiseen. TONUS:sta käytetään myös vedynpoiston mallintamiseen passiivisilla autokatalyyttisillä rekombinaattoreilla. Vedynkulutukseen vaikuttavat tekijät eroteltiin ja tutkittiin yksi kerrallaan. Rekombinaattoreiden vuorovaikutuksia tutkittaessa samaan tilavuuteen sijoitettiin eri kokoisia ja eri lukumäärä rekombinaattoreita. Siemens rekombinaattorimalli TONUS OD-ohjelmassa laskee vedynkulutuksen kuten oletettiin ja tulokset vahvistavat TONUS OD-ohjelman fysikaalisen laskennan luotettavuuden. Mahdollisia paikallisia jakautumia tutkitussa tilavuudessa ei voitu havaita LP-ohjelmalla, koska se käyttäälaskennassa suureiden tilavuuskeskiarvoja. Paikallisten jakautumien tutkintaan tarvitaan CFD -laskentaohjelma.
Resumo:
Type I interferon (IFN) is a common therapy for autoimmune and inflammatory disorders, yet the mechanisms of action are largely unknown. Here we showed that type I IFN inhibited interleukin-1 (IL-1) production through two distinct mechanisms. Type I IFN signaling, via the STAT1 transcription factor, repressed the activity of the NLRP1 and NLRP3 inflammasomes, thereby suppressing caspase-1-dependent IL-1β maturation. In addition, type I IFN induced IL-10 in a STAT1-dependent manner; autocrine IL-10 then signaled via STAT3 to reduce the abundance of pro-IL-1α and pro-IL-1β. In vivo, poly(I:C)-induced type I IFN diminished IL-1β production in response to alum and Candida albicans, thus increasing susceptibility to this fungal pathogen. Importantly, monocytes from multiple sclerosis patients undergoing IFN-β treatment produced substantially less IL-1β than monocytes derived from healthy donors. Our findings may thus explain the effectiveness of type I IFN in the treatment of inflammatory diseases but also the observed "weakening" of the immune system after viral infection.
Resumo:
Preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol was carried out by the enzymatic hydrolysis of halohydrin palmitates using biocatalysts. Halohydrin palmitates were prepared by various methods from palmitic acid and 1,2-octanediol. A tandem hydrolysis was carried out using lipases from Candida antarctica (Novozym® 435), Rhizomucor miehei (Lipozyme IM), and “resting cells” from a Rhizopus oryzae strain that was not mycotoxigenic. The influence of the enzyme and the reaction medium on the selective hydrolysis of isomeric mixtures of halohydrin esters is described. Novozym® 435 allowed preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol after 1–3 h ofreaction at 40 °C in [BMIM][PF6].