997 resultados para Internet (Redes de computação)
Resumo:
Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.
Resumo:
With the growing demand of data traffic in the networks of third generation (3G), the mobile operators have attempted to focus resources on infrastructure in places where it identifies a greater need. The channeling investments aim to maintain the quality of service especially in dense urban areas. WCDMA - HSPA parameters Rx Power, RSCP (Received Signal Code Power), Ec/Io (Energy per chip/Interference) and transmission rate (throughput) at the physical layer are analyzed. In this work the prediction of time series on HSPA network is performed. The collection of values of the parameters was performed on a fully operational network through a drive test in Natal - RN, a capital city of Brazil northeastern. The models used for prediction of time series were the Simple Exponential Smoothing, Holt, Holt Winters Additive and Holt Winters Multiplicative. The objective of the predictions of the series is to check which model will generate the best predictions of network parameters WCDMA - HSPA.
Resumo:
This work aims at modeling power consumption at the nodes of a Wireless Sensor Network (WSN). For doing so, a finite state machine was implemented by means of SystemC-AMS and Stateflow modeling and simulation tools. In order to achieve this goal, communication data in a WSN were collected. Based on the collected data, a simulation environment for power consumption characterization, which aimed at describing the network operation, was developed. Other than performing power consumption simulation, this environment also takes into account a discharging model as to analyze the battery charge level at any given moment. Such analysis result in a graph illustrating the battery voltage variations as well as its state of charge (SOC). Finally, a case study of the WSN power consumption aims to analyze the acquisition mode and network data communication. With this analysis, it is possible make adjustments in node-sensors to reduce the total power consumption of the network.
Resumo:
Wireless sensor networks (WSN) have gained ground in the industrial environment, due to the possibility of connecting points of information that were inaccessible to wired networks. However, there are several challenges in the implementation and acceptance of this technology in the industrial environment, one of them the guaranteed availability of information, which can be influenced by various parameters, such as path stability and power consumption of the field device. As such, in this work was developed a tool to evaluate and infer parameters of wireless industrial networks based on the WirelessHART and ISA 100.11a protocols. The tool allows quantitative evaluation, qualitative evaluation and evaluation by inference during a given time of the operating network. The quantitative and qualitative evaluation are based on own definitions of parameters, such as the parameter of stability, or based on descriptive statistics, such as mean, standard deviation and box plots. In the evaluation by inference uses the intelligent technique artificial neural networks to infer some network parameters such as battery life. Finally, it displays the results of use the tool in different scenarios networks, as topologies star and mesh, in order to attest to the importance of tool in evaluation of the behavior of these networks, but also support possible changes or maintenance of the system.
Resumo:
An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.
Resumo:
A Wireless Sensor Network (WSN) consists of distributed devices in an area in order to monitor physical variables such as temperature, pressure, vibration, motion and environmental conditions in places where wired networks would be difficult or impractical to implement, for example, industrial applications of difficult access, monitoring and control of oil wells on-shore or off-shore, monitoring of large areas of agricultural and animal farming, among others. To be viable, a WSN should have important requirements such as low cost, low latency, and especially low power consumption. However, to ensure these requirements, these networks suffer from limited resources, and eventually being used in hostile environments, leading to high failure rates, such as segmented routing, mes sage loss, reducing efficiency, and compromising the entire network, inclusive. This work aims to present the FTE-LEACH, a fault tolerant and energy efficient routing protocol that maintains efficiency in communication and dissemination of data.This protocol was developed based on the IEEE 802.15.4 standard and suitable for industrial networks with limited energy resources
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
Wireless Communication is a trend in the industrial environment nowadays and on this trend, we can highlight the WirelessHART technology. In this situation, it is natural the search for new improvements in the technology and such improvements can be related directly to the routing and scheduling algorithms. In the present thesis, we present a literature review about the main specific solutions for Routing and scheduling for WirelessHART. The thesis also proposes a new scheduling algorithm called Flow Scheduling that intends to improve superframe utilization and flexibility aspects. For validation purposes, we develop a simulation module for the Network Simulator 3 (NS-3) that models aspects like positioning, signal attenuation and energy consumption and provides an link individual error configuration. The module also allows the creation of the scheduling superframe using the Flow and Han Algorithms. In order to validate the new algorithms, we execute a series of comparative tests and evaluate the algorithms performance for link allocation, delay and superframe occupation. In order to validate the physical layer of the simulation module, we statically configure the routing and scheduling aspects and perform reliability and energy consumption tests using various literature topologies and error probabilities.
Resumo:
Wireless Communication is a trend in the industrial environment nowadays and on this trend, we can highlight the WirelessHART technology. In this situation, it is natural the search for new improvements in the technology and such improvements can be related directly to the routing and scheduling algorithms. In the present thesis, we present a literature review about the main specific solutions for Routing and scheduling for WirelessHART. The thesis also proposes a new scheduling algorithm called Flow Scheduling that intends to improve superframe utilization and flexibility aspects. For validation purposes, we develop a simulation module for the Network Simulator 3 (NS-3) that models aspects like positioning, signal attenuation and energy consumption and provides an link individual error configuration. The module also allows the creation of the scheduling superframe using the Flow and Han Algorithms. In order to validate the new algorithms, we execute a series of comparative tests and evaluate the algorithms performance for link allocation, delay and superframe occupation. In order to validate the physical layer of the simulation module, we statically configure the routing and scheduling aspects and perform reliability and energy consumption tests using various literature topologies and error probabilities.
Resumo:
The Telehealth Brazil Networks Program, created in 2007 with the aim of strengthening primary care and the unified health system (SUS - Sistema Único de Saúde), uses information and communication technologies for distance learning activities related to health. The use of technology enables the interaction between health professionals and / or their patients, furthering the ability of Family Health Teams (FHT). The program is grounded in law, which determines a number of technologies, protocols and processes which guide the work of Telehealth nucleus in the provision of services to the population. Among these services is teleconsulting, which is registered consultation and held between workers, professionals and managers of healthcare through bidirectional telecommunication instruments, in order to answer questions about clinical procedures, health actions and questions on the dossier of work. With the expansion of the program in 2011, was possible to detect problems and challenges that cover virtually all nucleus at different scales for each region. Among these problems can list the heterogeneity of platforms, especially teleconsulting, and low internet coverage in the municipalities, mainly in the interior cities of Brazil. From this perspective, the aim of this paper is to propose a distributed architecture, using mobile computing to enable the sending of teleconsultation. This architecture works offline, so that when internet connection data will be synchronized with the server. This data will travel on compressed to reduce the need for high transmission rates. Any Telehealth Nucleus can use this architecture, through an external service, which will be coupled through a communication interface.
Resumo:
The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.
Resumo:
The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
The formation of groups acquired new features with the arrival of the internet. The links before straitened between family, work groups and close friends today reach long distances through online communities. These communities represent groups that have affinities and common interests, and use the community space to discuss these. Examples of these communities are those related to franchise Game of Thrones, a literary phenomenon that has expanded by various media, including the social, television, and communities. This report aims to present the work steps and the theoretical reflection, necessary for the achievement of a final product in file format, which aimed to measure the engagement and participation of GOT fans on the Internet, especially in two Facebook GOT communities during the fifth season of the series aired on HBO.