996 resultados para IPC, passive, port-hamiltonian, hamiltonian, RCC, KUKA, ROS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Understanding which environmental factors drive foraging preferences is critical for the development of effective management measures, but resource use patterns may emerge from processes that occur at different spatial and temporal scales. Direct observations of foraging are also especially challenging in marine predators, but passive acoustic techniques provide opportunities to study the behaviour of echolocating species over a range of scales. 2.We used an extensive passive acoustic data set to investigate the distribution and temporal dynamics of foraging in bottlenose dolphins using the Moray Firth (Scotland, UK). Echolocation buzzes were identified with a mixture model of detected echolocation inter-click intervals and used as a proxy of foraging activity. A robust modelling approach accounting for autocorrelation in the data was then used to evaluate which environmental factors were associated with the observed dynamics at two different spatial and temporal scales. 3.At a broad scale, foraging varied seasonally and was also affected by seabed slope and shelf-sea fronts. At a finer scale, we identified variation in seasonal use and local interactions with tidal processes. Foraging was best predicted at a daily scale, accounting for site specificity in the shape of the estimated relationships. 4.This study demonstrates how passive acoustic data can be used to understand foraging ecology in echolocating species and provides a robust analytical procedure for describing spatio-temporal patterns. Associations between foraging and environmental characteristics varied according to spatial and temporal scale, highlighting the need for a multi-scale approach. Our results indicate that dolphins respond to coarser scale temporal dynamics, but have a detailed understanding of finer-scale spatial distribution of resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the non-Markovian decoherence is considered in two ways. Firstly, an effective Hamiltonian approach is demonstrated to investigate the decoherence of a quantum system in a non-Markovian environment, in which complete positivity of the reduced dynamics is achieved. This method uses the notion of an effective environment, that is a subsystem of the environment that causes the decoherence. Secondly, the evolution of the system and environment is decomposed, thus partially illuminating how they would interact given that memory effects are allowed. It should be noted that beam splitters and rotators are sufficient to explain this decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an effective Hamiltonian approach to investigate decoherence of a quantum system in a non-Markovian reservoir, naturally imposing the complete positivity on the reduced dynamics of the system. The formalism is based on the notion of an effective reservoir, i.e., certain collective degrees of freedom in the reservoir that are responsible for the decoherence. As examples for completely positive decoherence, we present three typical decoherence processes for a qubit such as dephasing, depolarizing, and amplitude damping. The effects of the non-Markovian decoherence are compared to the Markovian decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physics of the plume-induced shock and separation, particularly at high plume to exit pressure ratios with and without shock-turbulent boundary-layer control methods, were studied using computational techniques. Mass-averaged Navier-Stokes equations with a two-equation turbulence model were solved by using a fully implicit finite volume scheme and time.marching algorithm. The control methodologies for shock interactions included a porous tail and a porous extension attached at the nozzle exit or trailing edge. The porous tail produced a weaker shock and fixed the shock position on the control surface. The effect of the porous extension on shock interactions was mainly to restrain the plume from strongly underexpanding during a change in flight conditions. These techniques could give an additional dimension to the design and control of supersonic missiles.