988 resultados para INDUCIBLE FACTOR
Resumo:
The success of a vaccine consists in the induction of an innate immune response and subsequent activation of the adaptive immune system. Because antigens are usually not immunogenic, the addition of adjuvants that activate innate immunity is required. The mycobacterial cord factor trehalose-6,6'-dimycolate (TDM) and its synthetic adjuvant analogue trehalose-6,6'-dibehenate (TDB) rely on the C-type lectin Mincle and the signaling molecules Syk and Card9 to trigger innate immunity. In this study, we show that stimulation of bone marrow-derived dendritic cells (BMDCs) with TDB induces Nlrp3 inflammasome-dependent IL-1β secretion. While Card9 is required for NF-κB activation by TDB, it is dispensable for TDB-induced activation of the Nlrp3 inflammasome. Additionally, efflux of intracellular potassium, lysosomal rupture, and oxygen radical (ROS) production are crucial for caspase-1 processing and IL-1β secretion by TDB. In an in vivo inflammation model, we demonstrate that the recruitment of neutrophils by TDB is significantly reduced in the Nlrp3-deficient mice compared to the wild-type mice, while the production of chemokines in vitro is not influenced by the absence of Nlrp3. These results identify the Nlrp3 inflammasome as an essential mediator for the induction of an innate immune response triggered by TDB.
Resumo:
RESULTADOS: Se intervino un 60,7% de los pacientes de SV aórtica, un 25,7% de SV mitral , un 13,6% de doble SV. Además, en el 22,5% se realizó revascularización coronaria. Las mujeres presentaban más edad, SV mitral, reintervención, fibrilación auricular, anemia y peor clase funcional. Los varones presentaron más tabaquismo, SV aórtica, enfermedad coronaria, cirugía de revascularización coronaria, función sistólica deprimida y tiempo de clampaje aórtico. En el análisis bivariado relacionado con mortalidad hospitalaria (8,35%) fueron significativos la edad, el sexo, la clase funcional, la posición de la prótesis, la superficie corporal, la anemia, el número de concentrados de hematíes y el tiempo de clampaje aórtico. Se constató como factores de riesgo independientes el sexo (OR 2,92; 95% intervalo confianza 1,05-8,14) y la anemia (OR 4,23; 95% intervalo confianza 1,66-10,8) tras ajustarlos con los factores de riesgo, factores confusores y el año de intervención. CONCLUSIONES: El sexo femenino es un factor de riesgo independiente para la mortalidad hospitalaria en la cirugía de sustitución valvular.
Resumo:
Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.
Resumo:
The TNF family ligands BAFF (also called BLyS) and APRIL regulate lymphocyte survival and activation. BAFF binds to three receptors, BAFF-R, TACI and BCMA, whereas APRIL interacts with TACI, BCMA and proteoglycans. The contribution of BAFF and APRIL to B-cell and plasma-cell survival, CD154 (CD40L)-independent antibody isotype switching, germinal center maintenance, T-dependent and T-independent antibody responses, and T cell co-stimulation are relatively well understood. Constitutive BAFF produced by stromal cells determines the size of the peripheral B cell pool, whereas inducible BAFF produced by myeloid and other cells supports local survival of B lymphocytes and can be associated with development of autoimmunity when deregulated.
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU- C assays have significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.
Resumo:
We compared plasma tumor necrosis factor-alpha (TNF-alpha) levels among asymptomatic/"indeterminate" Chagas disease patients (ASY) and patients across the clinical spectrum of chronic Chagas disease cardiomyopathy (CCC). Idiopathic dilated cardiomyopathy (DCM) patients and normal controls (NC) were included as controls. ASY Chagas disease patients had significantly higher plasma TNF-alpha levels than NC. TNF-alpha levels among severe CCC patients with significant left ventricular (LV) dysfunction were similar to those of DCM patients, showing average 2-fold higher levels than CCC patients without LV dysfunction and ASY patients, and 8-fold higher levels than NC. In Chagas disease, chronic TNF-a production prior to heart failure may play a role in CCC progression.
Resumo:
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.
Resumo:
Atrial fibrillation (AF) is a frequent arrhythmia after conventional coronary artery bypass grafting. With the advent of minimally invasive technique for left internal mammary artery-left anterior descending coronary artery (LIMA-LAD) grafting, we analyzed the incidence and the risk factors of postoperative AF in this patient population. This prospective study involves all patients undergoing isolated LIMA-LAD grafting with minimally invasive technique between January 1994 and June 2000. Twenty-four possible risk factors for postoperative AF were entered into univariate and multivariate logistic regression analyses. Postoperative AF occurred in 21 of the 90 patients (23.3%) analyzed. Double- or triple-vessel disease was present in 12/90 patients (13.3%). On univariate analysis, right coronary artery disease (p <0.01), age (p = 0.01), and diabetes (p = 0.04) were found to be risk factors for AF. On multivariate analysis, right coronary artery disease was identified as the sole significant risk factor (p = 0.02). In this patient population, the incidence of AF after minimally invasive coronary artery bypass is in the range of that reported for conventional coronary artery bypass grafting. Right coronary artery disease was found to be an independent predictor, and this may be related to the fact that in this patient population the diseased right coronary artery was not revascularized at the time of the surgical procedure. For the same reason, this risk factor may find a broader application to noncardiac thoracic surgery.
Resumo:
Factor D is an essential enzyme for activation of complement by the alternative pathway (AP). It has been difficult to obtain mouse monoclonal antibodies (Mabs) which block the function of factor D. We have developed a strategy to obtain such Mabs using a double screening procedure of the initial clones. We selected the clone whose supernatant had the lowest level of anti-factor D Ab by ELISA and abolished factor D haemolytic activity. Addition of this Mab to human serum was shown to abolish conversion of C3 by cobra venom factor, haemolysis of rabbit erythrocytes, and activation of C3 and C5 by cuprophane dialysis membranes.
Resumo:
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Resumo:
Weaning Swiss mice were percutaneously infected with 30 cercariae of Schistosoma mansoni and submitted to a shifting either from a deficient to a balanced diet or vice-versa, for 24 weeks. The nutritional status was weekly evaluated by measurements of growth curves and food intake. Hepatic fibrosis and periovular granulomas were studied by histological, morphometric and biochemical methods. All mice fed on a deficient diet failed to develop periportal "pipestem" fibrosis after chronic infection. An unexpected finding was the absence of pipestem fibrosis in mice on normal diet, probably related to the sample size. The lower values for nutritional parameters were mainly due to the deficient diet, rather than to infection. Liver/body weight ratio was higher in "early undernutrition" group, after shifting to the balanced diet. Volume density and numerical density of egg granulomas reached lowest values in undernourished animals. The amount of collagen was reduced in undernourished mice, attaining higher concentrations in well-fed controls and in "late undernutrition" (balanced diet shifted to a deficient one), where collagen deposition appeared increased in granulomas. That finding suggested interference with collagen degradation and resorption in "late" undernourished animals. Thus, host nutritional status plays a role in connective tissue changes of hepatic schistosomiasis in mice.
Resumo:
For more than a quarter of a century, macrophage migration inhibitory factor (MIF) has been a mysterious cytokine. In recent years, MIF has assumed an important role as a pivotal regulator of innate immunity. MIF is an integral component of the host antimicrobial alarm system and stress response that promotes the pro-inflammatory functions of immune cells. A rapidly increasing amount of literature indicates that MIF is implicated in the pathogenesis of sepsis, and inflammatory and autoimmune diseases, suggesting that MIF-directed therapies might offer new treatment opportunities for human diseases in the future.
Resumo:
Members of the Ly-49 gene family code for class I MHC-specific receptors that regulate NK cell function. Due to a combinatorial distribution of Ly-49 receptors, NK cells display considerable clonal heterogeneity. The acquisition of one Ly-49 receptor, Ly-49A is strictly dependent on the transcriptional trans-acting factor T cell-specific factor-1 (TCF-1). Indeed, TCF-1 binds to two sites in the Ly-49a promoter and regulates its activity, suggesting that the Ly-49a gene is a direct TCF-1 target. TCF-1 deficiency resulted in the altered usage of additional Ly-49 receptors. We show in this study, using TCF-1 beta(2)-microglobulin double-deficient mice, that these repertoire alterations are not due to Ly-49/MHC class I interactions. Our findings rather suggest a TCF-1-dependent, cell autonomous effect on the acquisition of multiple Ly-49 receptors. Besides reduced receptor usage (Ly-49A and D), we also observed no effect (Ly-49C) and significantly expanded (Ly-49G and I) receptor usage in the absence of TCF-1. These effects did not in all cases correlate with the presence of TCF binding sites in the respective proximal promoter. Therefore, besides TCF-1 binding to the proximal promoter, Ly-49 acquisition may also be regulated by TCF-1 binding to more distant cis-acting elements and/or by regulating the expression of additional trans-acting factors. Consistent with the observed differential, positive or negative role of TCF-1 for Ly-49 receptor acquisition, reporter gene assays revealed the presence of an inducing as well as a repressing TCF site in certain proximal Ly-49 promoters. These findings reveal an important role of TCF-1 for the formation of the NK cell receptor repertoire.