994 resultados para Gradient environmental
Resumo:
Studies aiming at explaining specialization along latitudinal gradients of plant-herbivore interactions have, to date, yielded inconclusive results. Here we propose the use of steep altitudinal gradients for dissecting factors driving evolution of polyphagy in insect herbivores. First, we test whether colonization of high elevation environment favours increased niche-breadth in two disparate insect groups - the wood-boring beetles and the pollinator group of bees - and show increased polyphagy at higher altitudes in both groups. We then assess classic assumptions transferred from the 'latitude-niche-breadth hypothesis', particularly the increase in environmental variability at high, compared to low, altitude. Finally, we discuss alternative mechanisms shaping the observed pattern of increased polyphagy in altitude, including variation in plant quality and predator pressure at different altitudes. We thus suggest evidence for the 'altitude niche-breadth hypothesis', in which both abiotic and biotic conditions, including increased variability and an increase of the potential feeding niche-breadth, promote evolution for increased insect polyphagy in altitude.
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
Audit report on the ADLM Counties Environmental Public Health Agency for the year ended June 30, 2007
Resumo:
Nestling birds produced later in the season are hypothesized to be of poor quality with a low probability of survival and recruitment. In a Spanish population of house martins (Delichon urbica), we first compared reproductive success, immune responses and morphological traits between the first and the second broods. Second, we investigated the effects of an ectoparasite treatment and breeding date on the recapture rate the following year. Due probably to a reverse situation in weather conditions during the experiment, with more rain during rearing of the first brood, nestlings reared during the second brood were in better condition and had stronger immune responses compared with nestlings from the first brood. Contrary to other findings on house martins, we found a similar recapture rate for chicks reared during the first and the second brood. Furthermore, ectoparasitic house martin bugs had no significant effect on the recapture rate. Recaptured birds had similar morphology but higher immunoglobulin levels when nestlings compared with non-recaptured birds. This result implies that a measure of immune function is a better predictor of survival than body condition per se.
Resumo:
We model green markets in which purchasers, either firms orconsumers, have higher willingness-to-pay for lesspolluting goods. The effectiveness of pollution reductionpolicies is examined in a duopoly setting. We show thatduopolists' strategic behaviour may increase pollutionlevels. Maximum emission standards, commonly used in greenmarkets, improve the environmental features of products.Nonetheless, overall pollution levels will rise becausegovernment regulation also affects market shares and bootsfirms' sales. Consequently, social welfare may be reduced.We also explore the effects of technological subsidies andproduct charges, including differentiation of charges.
Resumo:
We present the first approach to the genetic diversity and structure of the Balearic toad (Bufo balearicus Boettger, 1880) for the island of Menorca. Forty-one individ- uals from 21 localities were analyzed for ten microsatellite loci. We used geo-refer- enced individual multilocus genotypes and a model-based clustering method for the inference of the number of populations and of the spatial location of genetic dis- continuities between those populations.¦Only six of the microsatellites analyzed were polymorphic. We revealed a northwest- ern area inhabited by a single population with several well-connected localities and another set of populations in the southeast that includes a few unconnected small units with genetically significant differences among them as well as with the individ- uals from the northwest of the island. The observed fragmentation may be explained by shifts from agricultural to tourism practices that have been taking place on the island of Menorca since the 1960s. The abandonment of rural activities in favor of urbanization and concomitant service areas has mostly affected the southeast of the island and is currently threatening the overall geographic connectivity between the different farming areas of the island that are inhabited by the Balearic toad.
Resumo:
This paper describes the influence of high environmental stress on evolutionary trends in some selected Mesozoic ammonite lineages and some protists. During extinction periods, many ammonoids are affected by drastic simplifications of their shell geometry, ornamentation and suture line. We observe that relatively tightly coiled ammonites can give rise to highly evolute forms or uncoiled heteromorphs with simple ornamentation and almost ceratitic suture line-a phenomenon called "proteromorphosis". Such simplifications often correspond to a reappearance of ancestral geometries (primitive ornamentation, evolute coiling or uncoiling) which suggest that the evolutionary clock of these organisms can be reinitialized by extreme, sublethal, environmental stress such as giant volcanism (including its consequences on diverse pollutions and on climatic changes) and major regressive events. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Comparative national management accounting is the least developed aspect in the field of international accounting. Only during the second half of the 1990's some comparisons of national managementaccounting practice have appeared published but only at theregional level. In this paper a range of factors that give rise to variations in national management accounting practice are postulated. We support this list with examples from a range of analyses of national management accounting practices, drawing particularly on the work of Lizcano (1996) and Bhimani (1996).Finally, twelve key factors are identified as influencing an individual country's approach to management accounting.
Resumo:
Faced with recurrent drought and famine during five centuries of human occupation, the small and densely populated Cape Verde Islands have a history of severe environmental problems. The arid climate and steep, rocky terrain provide scant resources for traditional subsistance farming under the best conditions, and in years of low rainfall the failure of rainfed crops causes massive food shortages. Agricultural use of steep slopes where rainfall is highest has led to soil erosion, as has removal of the island's vegetation for fuel and livestock. Pressure on the vegetation is particularly severe in dry years. International aid can provide relief from famine, and the introduction of modern agricultural and conservation techniques can improve the land and increase yield, but it is unlikely that Cape Verde can ever be entirely self -sufficient in food. Ultimately, the solution of Cape Verde's economic and environmental problems will probably require the development of productive urban jobs so the population can shift away from the intensive and destructive use of land for subsistance farming. In the meantime, the people of Cape Verde can best be served by instituting fundamental measures to conserve and restore the land so that it can be used to its fullest potential. The primary environmental problems in Cape Verde today are: 1. Soil degradation. Encouraged by brief but heavy rains and steep slopes, soil erosion is made worse by lack of vegetation. Soils are also low in organic matter due to the practice of completely removing crop plants and natural vegetation for food, fuel or livestock feed. 2. Water shortage. Brief and erratic rainfall in combination with rapid runoff makes surface water scarce and difficult to use. Groundwater supplies can be better developed but capabilities are poorly known and the complex nature of the geological substrate makes estimation difficult. Water is the critical limiting factor to the agricultural capability of the islands. 3. Fuel shortage. Demand for fuel is intense and has resulted in the virtual elimination of native vegetation. Fuelwood supplies are becoming more and more scarce and costly. Development of managed fuelwood plantations and alternate energy sources is required. 4. Inappropriate land use. Much of the land now used for raising crops or livestock is too steep or too arid for these purposes, causing erosion and destruction of vegetation. Improving yield in more appropriate areas and encouraging less damaging uses of the remaining marginal lands can help to alleviate this problem.
Resumo:
Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci etal. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (JOrgensen etal. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.
Resumo:
Structural equation models (SEM) are commonly used to analyze the relationship between variables some of which may be latent, such as individual ``attitude'' to and ``behavior'' concerning specific issues. A number of difficulties arise when we want to compare a large number of groups, each with large sample size, and the manifest variables are distinctly non-normally distributed. Using an specific data set, we evaluate the appropriateness of the following alternative SEM approaches: multiple group versus MIMIC models, continuous versus ordinal variables estimation methods, and normal theory versus non-normal estimation methods. The approaches are applied to the ISSP-1993 Environmental data set, with the purpose of exploring variation in the mean level of variables of ``attitude'' to and ``behavior''concerning environmental issues and their mutual relationship across countries. Issues of both theoretical and practical relevance arise in the course of this application.
Resumo:
Learning has been postulated to 'drive' evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined by both the genotype and learning. Our findings indicate that learning substantially increases the range of parameters under which the species expands and adapts to the novel habitat, particularly if the two habitats are separated by a sharp ecotone (rather than a gradient). However, for a broad range of parameters, learning reduces the degree of genetically-based local adaptation following the expansion and facilitates maintenance of genetic variation within local populations. Thus, in heterogeneous environments learning may facilitate evolutionary range expansions and maintenance of the potential of local populations to respond to subsequent environmental changes.
Resumo:
A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.
Resumo:
Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Carabidae is composed mainly by ground-dwelling predator beetles. It is the fourth most diverse group within Coleoptera, but its diversity in the Neotropical region is understudied. Here we describe and analyze the diversity of carabid beetles in a region of subtropical rain forest dominated by Araucaria angustifolia with different landscapes. Three areas were chosen in an environmental integrity gradient: primary forests, secondary forests and old Pinus plantations. Pitfall traps were taken monthly, in a total of 14 samples per area. 1733 adult carabid beetles, belonging to 18 species, were sampled. There were differences in richness and abundance between the sampled areas. The total scores followed the same tendency: primary forests (14 species/747 individuals), secondary forests (13/631) and Pinus forests (10/355). An analysis of similarity shows differences in species composition, for both areas and seasons. Galerita lacordarei was the most abundant species for all samples and seasons. Carabid species show similar responses in accordance with habitat heterogeneity and disturbance. The abundance of Galerita lacordarei was influenced by temperature, for all sampled sites. Environmental changes affect the carabid assemblages and decrease diversity, possibly interfering in local dynamics. Seasonality patterns seem to indicate an increase in individual movement during summer, probably in search of resources. It is suggested that microhabitat patchiness is probably an important factor affecting carabid beetle diversity at small spatial scales.