979 resultados para Fuzzy modeling
Resumo:
Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.
Resumo:
Techniques of evaluation of risks coming from inherent uncertainties to the agricultural activity should accompany planning studies. The risk analysis should be carried out by risk simulation using techniques as the Monte Carlo method. This study was carried out to develop a computer program so-called P-RISCO for the application of risky simulations on linear programming models, to apply to a case study, as well to test the results comparatively to the @RISK program. In the risk analysis it was observed that the average of the output variable total net present value, U, was considerably lower than the maximum U value obtained from the linear programming model. It was also verified that the enterprise will be front to expressive risk of shortage of water in the month of April, what doesn't happen for the cropping pattern obtained by the minimization of the irrigation requirement in the months of April in the four years. The scenario analysis indicated that the sale price of the passion fruit crop exercises expressive influence on the financial performance of the enterprise. In the comparative analysis it was verified the equivalence of P-RISCO and @RISK programs in the execution of the risk simulation for the considered scenario.
Resumo:
Entender o comportamento e suas pequenas variações decorrentes das mudanças do ambiente térmico e desenvolver modelos que simulem o bem-estar a partir de respostas das aves ao ambiente constituem o primeiro passo para a criação de um sistema de monitoramento digital de aves em galpões de produção. Neste trabalho, foi desenvolvido um sistema de suporte à decisão com base na teoria dos conjuntos fuzzy para a estimativa do bem-estar de matrizes pesadas em função de frequências e duração dos comportamentos expressos pelas aves. O desenvolvimento do sistema passou por cinco etapas distintas: 1) organização dos dados experimentais; 2) apresentação dos vídeos em entrevista com "especialista"; 3) criação das funções de pertinência com base nas entrevistas e na revisão da literatura; 4) simulação de frequências de ocorrências e tempos médios de expressão dos comportamentos classificados como indicadores de bem-estar utilizando equações de regressão obtidas na literatura, e 5) construção das regras, simulação e validação do sistema. O sistema fuzzy desenvolvido estimou satisfatoriamente o bem-estar de matrizes pesadas, tendo na sua última versão, com maior número de regras, acertado 77,8% dos dados experimentais, comparados com as respostas esperadas por um especialista. O sistema pode ser utilizado como instrumento matemático-computacional para apoiar decisões em galpões de produção de matrizes pesadas.
Resumo:
A estimativa de conforto térmico na avicultura moderna é importante para que sistemas de climatização possam ser acionados no tempo correto, diminuindo perdas e aumentando rendimentos. Embora a literatura corrente apresente alguns índices de conforto térmico, que são aplicados para essa estimativa, estes são baseados apenas em condições do ambiente térmico e não consideram fatores importantes inerentes aos animais, tais como genética e capacidade de aclimatação, provendo, geralmente, uma estimativa inadequada do conforto térmico das aves. Este trabalho desenvolveu o Índice Fuzzy de Conforto Térmico (IFCT), com o intuito de estimar o conforto térmico de frangos de corte, considerando que o mecanismo usado pelas aves para perda de calor em ambientes fora da zona termoneutra é a vasodilatação periférica, que aumenta a temperatura superficial, e que pode ser usada como indicador do estado de conforto. O IFCT foi desenvolvido a partir de dois experimentos, que proporcionaram 108 cenários ambientais diferentes. Foram usadas imagens termográficas infravermelhas, para o registro dos dados de temperaturas superficiais das penas e da pele, e o grau de empenamento das aves. Para os mesmos cenários de ambiente térmico observados nos experimentos, foram comparados os resultados obtidos usando o IFCT e o Índice de Temperatura e Umidade (ITU). Os resultados validaram o IFCT para a estimativa do conforto térmico de frangos de corte, sendo específico na estimativa de condições de perigo térmico, usual em alojamentos em países de clima tropical. Essa característica é desejável em modelos que estimem o bem-estar térmico de frangos de corte, pois situações classificadas como perigo acarretam no dispêndio de recursos para evitar perdas produtivas.
Resumo:
The fuzzy logic admits infinite intermediate logical values between false and true. With this principle, it developed in this study a system based on fuzzy rules, which indicates the body mass index of ruminant animals in order to obtain the best time to slaughter. The controller developed has as input the variables weight and height, and as output a new body mass index, called Fuzzy Body Mass Index (Fuzzy BMI), which may serve as a detection system at the time of livestock slaughtering, comparing one another by the linguistic variables "Very Low", "Low", "Average ", "High" and "Very High". For demonstrating the use application of this fuzzy system, an analysis was made with 147 Nellore beeves to determine Fuzzy BMI values for each animal and indicate the location of body mass of any herd. The performance validation of the system was based on a statistical analysis using the Pearson correlation coefficient of 0.923, representing a high positive correlation, indicating that the proposed method is appropriate. Thus, this method allows the evaluation of the herd comparing each animal within the group, thus providing a quantitative method of farmer decision. It was concluded that this study established a computational method based on fuzzy logic that mimics part of human reasoning and interprets the body mass index of any bovine species and in any region of the country.
Resumo:
In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.
Resumo:
Diante do alto grau de mecanização a que as atividades agrícolas estão sendo submetidas, objetivou-se, com esta pesquisa, desenvolver um modelo fuzzy capaz de avaliar e classificar o nível de insalubridade em diversos ambientes de trabalho. O modelo desenvolvido tem como variáveis de entrada: o índice de bulbo úmido e temperatura de globo (IBUTG, °C), o nível de ruído (dBA), a taxa de metabolismo (W m-2) e o tempo de descanso (%) e, como variável de saída, o índice de bem-estar humano (IBEH). O método de inferência utilizado foi o de Mandani e, na defuzificacão, utilizou-se o método do centro de gravidade. O sistema de regras foi desenvolvido com base nas combinações das variáveis de entrada. Foram definidas 400 regras com pesos iguais a 1, sendo que, na elaboração das regras, um especialista da área foi consultado. Foram utilizados dados de campo visando a testar o sistema desenvolvido, e os resultados mostraram que a modelagem proposta é uma ferramenta promissora na determinação do IBEH, apresentando tempo de descanso ideal variando de 64,2% (motosserra, próximo ao ouvido do operador) até 25% (derriçadora, 20 m de distância do operador), sendo que, diante de um cenário predefinido do ambiente térmico e acústico, foi possível determinar o grau de bem-estar humano e o tempo de descanso ideal para cada equipamento avaliado.
Resumo:
Um sistema de inferência fuzzy foi desenvolvido baseado em dados da literatura para predição do consumo de ração, ganho de peso e conversão alimentar de frangos de corte com idade variando de 1 a 21, dias submetidos a diferentes condições térmicas. O sistema fuzzy foi estruturado com base em três variáveis de entrada: idade das aves (semanas), temperatura (°C) e umidade relativa (%) ambientes, sendo que as variáveis de saída consideradas foram: ganho de peso, consumo de ração e conversão alimentar. A inferência foi realizada por meio do método de Mamdani, que consistiu na elaboração de 45 regras e a defuzzificação por meio do método do Centro de Gravidade. Com base nos resultados, ao se compararem os dados da literatura com os obtidos pelo sistema fuzzy proposto, verificou-se desempenho satisfatório na predição das variáveis respostas, com R² da ordem de 0,995; 0,998 e 0,976, respectivamente. O ganho de peso predito pela lógica fuzzy foi validado com dados experimentais de campo, no qual se obteve R² = 0,975, apresentando grande potencial de uso em sistemas de climatização automatizado.
Resumo:
The interaction between the soil and tillage tool can be examined using different parameters for the soil and the tool. Among the soil parameters are the shear stress, cohesion, internal friction angle of the soil and the pre-compression stress. The tool parameters are mainly the tool geometry and depth of operation. Regarding to the soils of Rio Grande do Sul there are hardly any studies and evaluations of the parameters that have importance in the use of mathematical models to predict tensile loads. The objective was to obtain parameters related to the soils of Rio Grande do Sul, which are used in soil-tool analysis, more specifically on mathematical models that allow the calculation of tractive effort for symmetric and narrow tools. Two of the main soils of Rio Grande do Sul, an Albaqualf and a Paleudult were studied. Equations that relate the cohesion, internal friction angle of the soil, adhesion, soil-tool friction angle and pre-compression stress as a function of water content in the soil were obtained, leading to important information for use of mathematical models for tractive effort calculation.
Resumo:
The goal of this study was to develop a fuzzy model to predict the occupancy rate of free-stalls facilities of dairy cattle, aiding to optimize the design of projects. The following input variables were defined for the development of the fuzzy system: dry bulb temperature (Tdb, °C), wet bulb temperature (Twb, °C) and black globe temperature (Tbg, °C). Based on the input variables, the fuzzy system predicts the occupancy rate (OR, %) of dairy cattle in free-stall barns. For the model validation, data collecting were conducted on the facilities of the Intensive System of Milk Production (SIPL), in the Dairy Cattle National Research Center (CNPGL) of Embrapa. The OR values, estimated by the fuzzy system, presented values of average standard deviation of 3.93%, indicating low rate of errors in the simulation. Simulated and measured results were statistically equal (P>0.05, t Test). After validating the proposed model, the average percentage of correct answers for the simulated data was 89.7%. Therefore, the fuzzy system developed for the occupancy rate prediction of free-stalls facilities for dairy cattle allowed a realistic prediction of stalls occupancy rate, allowing the planning and design of free-stall barns.
Resumo:
The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.
Resumo:
A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecasting” and “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
ABSTRACT The Body Mass Index (BMI) can be used by farmers to help determine the time of evaluation of the body mass gain of the animal. However, the calculation of this index does not reveal immediately whether the animal is ready for slaughter or if it needs special care fattening. The aim of this study was to develop a software using the Fuzzy Logic to compare the bovine body mass among themselves and identify the groups for slaughter and those that requires more intensive feeding, using "mass" and "height" variables, and the output Fuzzy BMI. For the development of the software, it was used a fuzzy system with applications in a herd of 147 Nellore cows, located in a city of Santa Rita do Pardo city – Mato Grosso do Sul (MS) state, in Brazil, and a database generated by Matlab software.