900 resultados para Fourier optics
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.
Resumo:
Generalised refraction is a topic which has, thus far, garnered far less attention than it deserves. The purpose of this thesis is to highlight the potential that generalised refraction has to offer with regards to imaging and its application to designing new passive optical devices. Specifically in this thesis we will explore two types of gener- alised refraction which takes place across a planar interface: refraction by generalised confocal lenslet arrays (gCLAs), and refraction by ray-rotation sheets. We will show that the corresponding laws of refraction for these interfaces produce, in general, light-ray fields with non-zero curl, and as such do not have a corresponding outgoing waveform. We will then show that gCLAs perform integral, geometrical imaging, and that this enables them to be considered as approximate realisations of metric tensor interfaces. The concept of piecewise transformation optics will be introduced and we will show that it is possible to use gCLAs along with other optical elements such as lenses to design simple piecewise transformation-optics devices such as invisibility cloaks and insulation windows. Finally, we shall show that ray-rotation sheets can be interpreted as performing geometrical imaging into complex space, and that as a consequence, ray-rotation sheets and gCLAs may in fact be more closely related than first realised. We conclude with a summary of potential future projects which lead naturally from the results of this thesis.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Resumo:
International audience
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
info:eu-repo/semantics/inPress
Resumo:
En este trabajo de investigación se hace referencia a una problemática de enseñanza y aprendizaje de la serie de Fourier en una escuela de ingeniería. Se considera que un factor que predomina en esta problemática es la desvinculación entre las áreas de la matemática y la especialidad. Para ello se propone, el contextualizar ala serie de Fourier en un fenómeno de transferencia de masa, propio del medio cultural en que se desarrolla un estudiante de ingeniería. Esperándose que mediante la integración de estas nociones, se presente un proceso de construcción de conceptos relacionados en este núcleo de formación. En esta perspectiva, la tarea de este trabajo, es el análisis de las concepciones del estudiante en el desarrollo de su conocimiento acerca de la serie de Fourier en el contexto indicado.
Resumo:
Altough nowadays DMTA is one of the most used techniques to characterize polymers thermo-mechanical behaviour, it is only effective for small amplitude oscillatory tests and limited to a single frequency analysis (linear regime). In this thesis work a Fourier transform based experimental system has proven to give hint on structural and chemical changes in specimens during large amplitude oscillatory tests exploiting multi frequency spectral analysis turning out in a more sensitive tool than classical linear approach. The test campaign has been focused on three test typologies: Strain sweep tests, Damage investigation and temperature sweep tests.
Resumo:
This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.