903 resultados para Fotografia Facial
Resumo:
本文对广义最佳鉴别矢量的求解方法进行研究 ,根据矩阵的扰动理论 ,改进了郭提出的求解广义最佳鉴别矢量的一种迭代算法 ,提出了求解广义最佳鉴别矢量的一种新的迭代算法 .本文算法的一个突出优点是随着类别数目的增加 ,计算时间反而缩短 ;而老算法随着类别数目的增加计算时间随着增加 ;不仅如此 ,新算法的识别率不劣于老算法 .在 ORL人脸数据库的数值实验 ,验证了上述论断的正确性
Resumo:
Whether facial identity and facial expression was processed independently has long been a controversy. Studies at levels of experimental, neuropsychological, functional imaging and cell-recording all failed to consistently support either independent or interdependent processing. Present study proposed that familiarity and discriminability of facial identity and expression was important variable in mediating the relation between facial identity and facial expression recognition. Effects of familiarity on recognition of facial identity and expression had been examined (e.g. Ganel & Goshen-Gottstein, 2004) but the role of the discriminability in recognition of facial identity and expression has not yet been carefully examined. To examine the role of discriminability of facial identity and expression, 8 experiments were conducted with Garner’s speeded classification task in recognition of identity and expression of unfamiliar faces. The discriminability of facial identity and expression was manipulated, and the measurements of Garner interference and facilitation indicated that: 1. The discriminability of facial identity and expression mediate the relation between facial identity and expression recognition. Four possible discriminability combinations between identity and expression predicted 4 interference patterns between them. Low discriminability accounted for the interference either in facial identity judgment or in facial expression judgment task. 2. The measurements of eye movements indicated that either in facial identity or in facial expression recognition low discriminability led to a narrowly-distributed eye fixation pattern while high discriminability led to a widely-distributed eye fixation pattern. 3. By combining the morphing technique with the Garner paradigm, study 2 successfully demonstrated the linar relation between discriminability and Garner facilitation effects, confirmed the discriminability effects in the measurements of Garner facilitation effects.. 4. By providing the varying information of facial expression, study 2 revealed that varying information improved the discriminability of facial expression, and then enhanced the recognition of facial expression. All the results indicated that the discriminability of facial identity and expression could mediate the independent or interdependent processing between them, and the discriminability effects on recognition of identity and expression of unfamiliar faces was identified. The results from interference effects and facilitation effects both indicated that the dimensional relation between facial identity and expression was separable but not asymmetric claimed by previous studies(Schweinberger et al, 1998, 1999). Absolutedly independent or interdependent processing between facial identity and expression recognition were both impossible, discriminability of identity and expression mediated the relation between them. The discriminability effects revealed in present study could explain the conflicts between existing findings well.
Resumo:
Schizophrenia is a heritable disorder. However, molecular genetics and related research area have not unmasked the nature and mechanisms of this disorder. Therefore, many researchers begin to explore the pathology mechanism from other approaches. High-risk study is one of the promising approaches. In this study, we mainly focused on facial emotion perception in schizophrenia and their non-psychotic first-degree relatives, and attempted to explore whether facial emotion perception is the potential biological marker of schizophrenia. This dissertation comprises 4 studies. In the first study, we conducted a meta-analysis on behavioral data of facial emotion perception in schizophrenia. Our findings showed that patients demonstrated general deficits in both facial emotion perception and facial processing tasks. In the second study, sixty-nine patients with schizophrenia and 56 of their first-degree relatives (33 parents and 23 siblings), and 92 healthy controls (67 younger and 25 older healthy controls) completed a set of facial emotion perception tasks. The results validated that patients with schizophrenia displayed general deficits in facial emotion perception. Study two also demonstrated that siblings of patients performed equally well compared to the corresponding younger healthy controls in all the facial emotion perception tasks, while the parents of patients behaved significantly worse than the corresponding older healthy controls in the composite index of facial emotion perception tasks. The results suggest that relatives of patients display more severely declining in facial emotion perception with the increasing of age. In the third study, we used an automated voxel-wise technique, activation likelihood estimation (ALE) to provide an objective, quantitative evaluation of facial emotion processing in schizophrenia. Our findings demonstrated a marked under-recruitment of the amygdala, accompanied by a substantial limitation in activation in schizophrenia throughout a ventral temporal-basal ganglia-prefrontal cortex ‘social-brain’ system may be central to the difficulties patients experience when processing facial emotion. In the last study, we did an fMRI study about facial emotion perception in 12 patients with schizophrenia, 12 non-psychotic siblings of patients and 12 healthy controls. The results suggest that siblings of patients demonstrate abnormal activation in a variety of brain areas, including prefrontal gyrus, insula, parahippocampal gyrus and superior temporal gyrus. Taken together, the current findings suggest facial emotion perception may be a potential biological marker of schizophrenia.
Resumo:
In this paper three problems related to the analysis of facial images are addressed: the illuminant direction, the compensation of illumination effects and, finally, the recovery of the pose of the face, restricted to in-depth rotations. The solutions proposed for these problems rely on the use of computer graphics techniques to provide images of faces under different illumination and pose, starting from a database of frontal views under frontal illumination.
Resumo:
The correspondence problem in computer vision is basically a matching task between two or more sets of features. In this paper, we introduce a vectorized image representation, which is a feature-based representation where correspondence has been established with respect to a reference image. This representation has two components: (1) shape, or (x, y) feature locations, and (2) texture, defined as the image grey levels mapped onto the standard reference image. This paper explores an automatic technique for "vectorizing" face images. Our face vectorizer alternates back and forth between computation steps for shape and texture, and a key idea is to structure the two computations so that each one uses the output of the other. A hierarchical coarse-to-fine implementation is discussed, and applications are presented to the problems of facial feature detection and registration of two arbitrary faces.
Resumo:
The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.
Resumo:
A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.
Resumo:
http://ijl.oxfordjournals.org/cgi/reprint/ecp022?ijkey=FWAwWPvILuZDT1S&keytype=ref
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported.