905 resultados para Finite Automata
Resumo:
Il metodo agli elementi finiti è stato utilizzato per valutare la distribuzione dei carichi e delle deformazioni in numerose componenti del corpo umano. L'applicazione di questo metodo ha avuto particolare successo nelle articolazioni con geometria semplice e condizioni di carico ben definite, mentre ha avuto un impatto minore sulla conoscenza della biomeccanica delle articolazioni multi-osso come il polso. Lo scopo di questo lavoro è quello di valutare gli aspetti clinici e biomeccanici dell’articolazione distale radio-ulnare, attraverso l’utilizzo di metodi di modellazione e di analisi agli elementi finiti. Sono stati progettati due modelli 3D a partire da immagini CT, in formato DICOM. Le immagini appartenevano ad un paziente con articolazione sana e ad un paziente con articolazione patologica, in particolare si trattava di una dislocazione ulnare traumatica. Le componenti principali dei modelli presi in considerazione sono stati: radio, ulna, cartilagine, legamento interosso, palmare e distale. Per la realizzazione del radio e dell’ulna sono stati utilizzati i metodi di segmentazione “Thresholding” e “RegionGrowing” sulle immagini e grazie ad operatori morfologici, è stato possibile distinguere l’osso corticale dall’osso spongioso. Successivamente è stata creata la cartilagine presente tra le due ossa, attraverso operazioni di tipo booleano. Invece, i legamenti sono stati realizzati prendendo i punti-nodo del radio e dell’ulna e formando le superfici tra di essi. Per ciascuna di queste componenti, sono state assegnate le corrispondenti proprietà dei materiali. Per migliorare la qualità dei modelli, sono state necessarie operazioni di “Smoothing” e “Autoremesh”. In seguito, è stata eseguita un’analisi agli elementi finiti attraverso l’uso di vincoli e forze, così da simulare il comportamento delle articolazioni. In particolare, sono stati simulati lo stress e la deformazione. Infine, grazie ai risultati ottenuti dalle simulazioni, è stato possibile verificare l’eventuale rischio di frattura in differenti punti anatomici del radio e dell’ulna nell’articolazione sana e patologica.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.
Resumo:
Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.
Resumo:
In questa tesi si descrive il lambda calcolo finito, un'istanza del lambda calcolo con tipi finiti. Si studia la metateoria e la complessità della riduzione.
Resumo:
Automatic design has become a common approach to evolve complex networks, such as artificial neural networks (ANNs) and random boolean networks (RBNs), and many evolutionary setups have been discussed to increase the efficiency of this process. However networks evolved in this way have few limitations that should not be overlooked. One of these limitations is the black-box problem that refers to the impossibility to analyze internal behaviour of complex networks in an efficient and meaningful way. The aim of this study is to develop a methodology that make it possible to extract finite-state automata (FSAs) descriptions of robot behaviours from the dynamics of automatically designed complex controller networks. These FSAs unlike complex networks from which they're extracted are both readable and editable thus making the resulting designs much more valuable.
Resumo:
Groundwater represents one of the most important resources of the world and it is essential to prevent its pollution and to consider remediation intervention in case of contamination. According to the scientific community the characterization and the management of the contaminated sites have to be performed in terms of contaminant fluxes and considering their spatial and temporal evolution. One of the most suitable approach to determine the spatial distribution of pollutant and to quantify contaminant fluxes in groundwater is using control panels. The determination of contaminant mass flux, requires measurement of contaminant concentration in the moving phase (water) and velocity/flux of the groundwater. In this Master Thesis a new solute flux mass measurement approach, based on an integrated control panel type methodology combined with the Finite Volume Point Dilution Method (FVPDM), for the monitoring of transient groundwater fluxes, is proposed. Moreover a new adsorption passive sampler, which allow to capture the variation of solute concentration with time, is designed. The present work contributes to the development of this approach on three key points. First, the ability of the FVPDM to monitor transient groundwater fluxes was verified during a step drawdown test at the experimental site of Hermalle Sous Argentau (Belgium). The results showed that this method can be used, with optimal results, to follow transient groundwater fluxes. Moreover, it resulted that performing FVPDM, in several piezometers, during a pumping test allows to determine the different flow rates and flow regimes that can occurs in the various parts of an aquifer. The second field test aiming to determine the representativity of a control panel for measuring mass flus in groundwater underlined that wrong evaluations of Darcy fluxes and discharge surfaces can determine an incorrect estimation of mass fluxes and that this technique has to be used with precaution. Thus, a detailed geological and hydrogeological characterization must be conducted, before applying this technique. Finally, the third outcome of this work concerned laboratory experiments. The test conducted on several type of adsorption material (Oasis HLB cartridge, TDS-ORGANOSORB 10 and TDS-ORGANOSORB 10-AA), in order to determine the optimum medium to dimension the passive sampler, highlighted the necessity to find a material with a reversible adsorption tendency to completely satisfy the request of the new passive sampling technique.
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.
Resumo:
Trauma or degenerative diseases such as osteonecrosis may determine bone loss whose recover is promised by a "tissue engineering“ approach. This strategy involves the use of stem cells, grown onboard of adequate biocompatible/bioreabsorbable hosting templates (usually defined as scaffolds) and cultured in specific dynamic environments afforded by differentiation-inducing actuators (usually defined as bioreactors) to produce implantable tissue constructs. The purpose of this thesis is to evaluate, by finite element modeling of flow/compression-induced deformation, alginate scaffolds intended for bone tissue engineering. This work was conducted at the Biomechanics Laboratory of the Institute of Biomedical and Neural Engineering of the Reykjavik University of Iceland. In this respect, Comsol Multiphysics 5.1 simulations were carried out to approximate the loads over alginate 3D matrices under perfusion, compression and perfusion+compression, when varyingalginate pore size and flow/compression regimen. The results of the simulations show that the shear forces in the matrix of the scaffold increase coherently with the increase in flow and load, and decrease with the increase of the pore size. Flow and load rates suggested for proper osteogenic cell differentiation are reported.
Resumo:
Nella tesi viene studiata la dinamica stocastica di particelle non interagenti su network con capacita di trasporto finita. L'argomento viene affrontato introducendo un formalismo operatoriale per il sistema. Dopo averne verificato la consistenza su modelli risolvibili analiticamente, tale formalismo viene impiegato per dimostrare l'emergere di una forza entropica agente sulle particelle, dovuta alle limitazioni dinamiche del network. Inoltre viene proposta una spiegazione qualitativa dell'effetto di attrazione reciproca tra nodi vuoti nel caso di processi sincroni.
Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study
Resumo:
Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.
Resumo:
In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.