1000 resultados para Fermionic integrable models
Resumo:
Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.
Resumo:
We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn.
Resumo:
Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.
Resumo:
In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Fisheries management agencies around the world collect age data for the purpose of assessing the status of natural resources in their jurisdiction. Estimates of mortality rates represent a key information to assess the sustainability of fish stocks exploitation. Contrary to medical research or manufacturing where survival analysis is routinely applied to estimate failure rates, survival analysis has seldom been applied in fisheries stock assessment despite similar purposes between these fields of applied statistics. In this paper, we developed hazard functions to model the dynamic of an exploited fish population. These functions were used to estimate all parameters necessary for stock assessment (including natural and fishing mortality rates as well as gear selectivity) by maximum likelihood using age data from a sample of catch. This novel application of survival analysis to fisheries stock assessment was tested by Monte Carlo simulations to assert that it provided unbiased estimations of relevant quantities. The method was applied to the data from the Queensland (Australia) sea mullet (Mugil cephalus) commercial fishery collected between 2007 and 2014. It provided, for the first time, an estimate of natural mortality affecting this stock: 0.22±0.08 year −1 .