942 resultados para Extremal polynomial ultraspherical polynomials
Resumo:
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.
Resumo:
La méthode de factorisation est appliquée sur les données initiales d'un problème de mécanique quantique déja résolu. Les solutions (états propres et fonctions propres) sont presque tous retrouvés.
Resumo:
Le but de ce mémoire est de dénombrer les polynômes irréductibles unitaires dans les corps finis avec certaines conditions sur les coefficients. Notre première condition sera de fixer la trace du polynôme. Par la suite, nous choisirons la cotrace lorsque la trace sera déjà fixée à zéro. Finalement, nous discuterons du cas où la trace et le terme constant sont fixés en même temps.
Resumo:
Dans ce travail, j’étudierai principalement un modèle abélien de Higgs en 2+1 dimensions, dans lequel un champ scalaire interagit avec un champ de jauge. Des défauts topologiques, nommés vortex, sont créés lorsque le potentiel possède un minimum brisant spontanément la symétrie U(1). En 3+1 dimensions, ces vortex deviennent des défauts à une dimension. Ils ap- paraissent par exemple en matière condensée dans les supraconducteurs de type II comme des lignes de flux magnétique. J’analyserai comment l’énergie des solutions statiques dépend des paramètres du modèle et en particulier du nombre d’enroulement du vortex. Pour le choix habituel de potentiel (un poly- nôme quartique dit « BPS »), la relation entre les masses des deux champs mène à deux types de comportements : type I si la masse du champ de jauge est plus grande que celle du champ sca- laire et type II inversement. Selon le cas, la dépendance de l’énergie au nombre d’enroulement, n, indiquera si les vortex auront tendance à s’attirer ou à se repousser, respectivement. Lorsque le flux emprisonné est grand, les vortex présentent un profil où la paroi est mince, permettant certaines simplifications dans l’analyse. Le potentiel, un polynôme d’ordre six (« non-BPS »), est choisi tel que le centre du vortex se trouve dans le vrai vide (minimum absolu du potentiel) alors qu’à l’infini le champ scalaire se retrouve dans le faux vide (minimum relatif du potentiel). Le taux de désintégration a déjà été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste d’abord à établir l’existence de vortex classi- quement stables de façon numérique. Puis, ma contribution fut une analyse des paramètres du modèle révélant le comportement énergétique de ceux-ci en fonction du nombre d’enroulement. Ce comportement s’avèrera être différent du cas « BPS » : le ratio des masses ne réussit pas à décrire le comportement observé numériquement.
Resumo:
Cette thèse présente des reconstructions de l'irradiance totale et spectrale durant les 400 dernières années à l'aide des modèles pour l'irradiance totale et l'irradiance spectrale dans l'ultraviolet développés à l'Université de Montréal. Tous deux sont basés sur la simulation de l'émergence, de la fragmentation et de l'érosion des taches solaires, qui permet d'obtenir une distribution de l'aire des taches sombres et des facules brillantes en fonction du temps. Ces deux composantes sont principalement responsables de la variation de l'irradiance sur l'échelle de temps de la décennie, qui peut être calculée en sommant leur émissivité à celle de la photosphère inactive. La version améliorée du modèle d'irradiance solaire spectrale MOCASSIM inclut une extension de son domaine spectral entre 150 et 400 nm ainsi que de son domaine temporel, débutant originalement en 1874 et couvrant maintenant la période débutant en 1610 jusqu'au présent. Cela permet de reconstruire le spectre ultraviolet durant le minimum de Maunder et de le comparer à celui du minimum de 2009. Les conclusions tirées de cette étude spécifient que l'émissivité dans l'ultraviolet était plus élevée en 2009 que durant le minimum de Maunder, que le niveau de base de la photosphère non magnétisée contribuait pour environ les deux tiers de cette différence et que les structures magnétiques restantes étaient responsables pour le tiers restant. Le modèle d'irradiance totale a vu son domaine temporel étendu sur la même période et une composante représentant le réseau magnétique de façon réaliste y a été ajoutée. Il a été démontré que les observations des 30 dernières années ne sont bien reproduites qu'en incluant la composante du Soleil non magnétisé variable à long terme. Le processus d'optimisation des paramètres libres du modèle a été effectué en minimisant le carré de la somme de l'écart journalier entre les résultats des calculs et les données observées. Les trois composites disponibles, soit celui du PMOD (Physikalisch Meteorologisches Observatorium Davos), d'ACRIM (ACtive Radiometer Irradiance Monitor) et du IRMB (Institut Royal Météorologique de Belgique), ne sont pas en accord entre eux, en particulier au niveau des minima du cycle d'activité, et le modèle permet seulement de reproduire celui du PMOD avec exactitude lorsque la composante variable à long terme est proportionnelle au flux radio à 10.7 cm. Toutefois, en utilisant des polynômes de Lagrange pour représenter la variation du Soleil inactif, l'accord est amélioré pour les trois composites durant les minima, bien que les relations entre le niveau minimal de l'irradiance et la longueur du cycle précédent varient d'un cas à l'autre. Les résultats obtenus avec le modèle d'irradiance spectrale ont été utilisés dans une étude d'intercomparaison de la réponse de la photochimie stratosphérique à différentes représentations du spectre solaire. Les simulations en mode transitoire d'une durée de 10 jours ont été effectuées avec un spectre solaire constant correspondant soit à une période d'activité minimale ou à une période d'activité maximale. Ceci a permis d'évaluer la réponse de la concentration d'ozone à la variabilité solaire au cours d'un cycle et la différence entre deux minima. En plus de ceux de MOCASSIM, les spectres produits par deux modèles ont été utilisés (NRLSSI et MGNM) ainsi que les données de SIM et SOLSTICE/SORCE. La variabilité spectrale de chacun a été extraite et multipliée à un spectre de base représentant le minimum d'activité afin de simuler le spectre au maximum d'activité. Cela a été effectué dans le but d'isoler l'effet de la variabilité seule et d'exclure celui de la valeur absolue du spectre. La variabilité spectrale d'amplitude relativement élevée des observations de SORCE n'a pas provoqué l'inversion de la réponse de l'ozone à hautes altitudes obtenues par d'autres études, ce qui peut être expliqué par la nature même du modèle utilisé ainsi que par sa limite supérieure en altitude. Finalement, la réponse de l'ozone semble être à peu près proportionnelle à la variabilité de l'intégrale du flux pour lambda<241 nm. La comparaison des concentrations d'ozone obtenues avec les spectres originaux au minimum d'activité démontre que leur différence est du même ordre de grandeur que la variabilité entre le minimum et le maximum d'un cycle typique. Le problème du choix de la reconstruction de l'irradiance à utiliser pour les simulations climatiques dans le passé demeure non résolu.
Resumo:
Étant donnée une fonction bornée (supérieurement ou inférieurement) $f:\mathbb{N}^k \To \Real$ par une expression mathématique, le problème de trouver les points extrémaux de $f$ sur chaque ensemble fini $S \subset \mathbb{N}^k$ est bien défini du point de vu classique. Du point de vue de la théorie de la calculabilité néanmoins il faut éviter les cas pathologiques où ce problème a une complexité de Kolmogorov infinie. La principale restriction consiste à définir l'ordre, parce que la comparaison entre les nombres réels n'est pas décidable. On résout ce problème grâce à une structure qui contient deux algorithmes, un algorithme d'analyse réelle récursive pour évaluer la fonction-coût en arithmétique à précision infinie et un autre algorithme qui transforme chaque valeur de cette fonction en un vecteur d'un espace, qui en général est de dimension infinie. On développe trois cas particuliers de cette structure, un de eux correspondant à la méthode d'approximation de Rauzy. Finalement, on établit une comparaison entre les meilleures approximations diophantiennes simultanées obtenues par la méthode de Rauzy (selon l'interprétation donnée ici) et une autre méthode, appelée tétraédrique, que l'on introduit à partir de l'espace vectoriel engendré par les logarithmes de nombres premiers.
Resumo:
Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.
Resumo:
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.
Resumo:
Ce mémoire porte sur la simulation d'intervalles de crédibilité simultanés dans un contexte bayésien. Dans un premier temps, nous nous intéresserons à des données de précipitations et des fonctions basées sur ces données : la fonction de répartition empirique et la période de retour, une fonction non linéaire de la fonction de répartition. Nous exposerons différentes méthodes déjà connues pour obtenir des intervalles de confiance simultanés sur ces fonctions à l'aide d'une base polynomiale et nous présenterons une méthode de simulation d'intervalles de crédibilité simultanés. Nous nous placerons ensuite dans un contexte bayésien en explorant différents modèles de densité a priori. Pour le modèle le plus complexe, nous aurons besoin d'utiliser la simulation Monte-Carlo pour obtenir les intervalles de crédibilité simultanés a posteriori. Finalement, nous utiliserons une base non linéaire faisant appel à la transformation angulaire et aux splines monotones pour obtenir un intervalle de crédibilité simultané valide pour la période de retour.
Resumo:
Dans ce mémoire, on étudie la désintégration d’un faux vide, c’est-à-dire un vide qui est un minimum relatif d’un potentiel scalaire par effet tunnel. Des défauts topologiques en 1+1 dimension, appelés kinks, apparaissent lorsque le potentiel possède un minimum qui brise spontanément une symétrie discrète. En 3+1 dimensions, ces kinks deviennent des murs de domaine. Ils apparaissent par exemple dans les matériaux magnétiques en matière condensée. Un modèle à deux champs scalaires couplés sera étudié ainsi que les solutions aux équations du mouvement qui en découlent. Ce faisant, on analysera comment l’existence et l’énergie des solutions statiques dépend des paramètres du modèle. Un balayage numérique de l’espace des paramètres révèle que les solutions stables se trouvent entre les zones de dissociation, des régions dans l’espace des paramètres où les solutions stables n’existent plus. Le comportement des solutions instables dans les zones de dissociation peut être très différent selon la zone de dissociation dans laquelle une solution se trouve. Le potentiel consiste, dans un premier temps, en un polynôme d’ordre six, auquel on y rajoute, dans un deuxième temps, un polynôme quartique multiplié par un terme de couplage, et est choisi tel que les extrémités du kink soient à des faux vides distincts. Le taux de désintégration a été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste à déterminer les conditions qui permettent aux kinks de catalyser la désintégration du faux vide. Il appert qu’on a trouvé une expression pour déterminer la densité critique de kinks et qu’on comprend ce qui se passe avec la plupart des termes.
Resumo:
La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.