976 resultados para Esophageal motility
Resumo:
Boerhaave's syndrome, the spontaneous rupture of the esophagus, is associated with a 35% death rate. Perforated esophagus is a surgical emergency; it is the most serious, and frequently the most rapidly lethal, perforation of the gastro-intestinal tract. Three cases of Boerhaave's syndrome are presented, with their variants and resolutions. Treatment and outcome are largely determined by the time of presentation. We reviewed our experience with esophageal perforations to determine the overall mortality and whether the time of presentation should influence management strategy.
Resumo:
We describe the case of a 54 year old woman seen with an esophageal mass diagnosed as a primary esophageal lymphoma. The main symptom was dysphagia of seven months duration. The treatment consisted in resection of the tumor, and reconstruction of the defect with a reversed pleural flap, followed by a chemotherapy regimen that consisted of five drugs, cyclophosphamid, prednisone, doxorubicin, rituximab and vincristine (R-CHOP). The patient developed an esophageal pleural fistula treated with pleural drainage and irrigation that closed in 45 days. Two and one half years later she is doing well and disease free.
Resumo:
Synovial sarcomas are uncommon malignant mesenchymal tumors occurring mainly near the joints of the extremities of young adults. Synovial sarcomas are exceedingly rare neoplasms of the digestive tract. We report the first diagnosed case of esophageal synovial sarcoma, highlighting its diagnostic features surgical management and follow-up.
Resumo:
Spontaneous esophageal rupture carries high morbidity and mortality. The main prognostic factor is early diagnosis, before 12 hours, and appropriate treatment. This is a case report of a 41-years-old man with late esophageal rupture diagnosis treated successfully with transmediatinal esophagectomy and esophageal-gastric tube cervical anastomosis.
Resumo:
Objective: To analyze the late results of advanced Chagasic megaesophagus treatment by esophagectomy associated with the use of proton pump inhibitor (omeprazole) as for the incidence of esophagitis and Barrett's esophagus in the remaining stump. Methods : We studied patients with advanced megaesophagus undergoing esophagectomy and transmediastinal esophagogastroplasty. Patients were divided into three groups: A (20) with esophageal replacement by full stomach, without the use of omeprazole; B (20) with esophageal replacement by full stomach, with omeprazole 40 mg/day introduced after the first postoperative endoscopy and maintained for six years; and C (30) with esophageal replacement by gastric tube with use of omeprazole. Dysphagia, weight loss and BMI were clinical parameters we analyzed. Upper gastrointestinal endoscopy was performed in all patients, and determined the height of the anastomosis, the aspect of the mucosa, with special attention to possible injuries arising from gastroesophageal reflux, and the patency of the esophagogastric anastomosis. Results : We studied 50 patients, 28 males (56%) and 22 (44%) females. All underwent endoscopy every year. In the first endoscopy, erosive esophagitis was present in nine patients (18%) and Barrett's esophagus, in four (8%); in the last endoscopy, erosive esophagitis was present in five patients (8%) and Barrett's esophagus in one (2%). When comparing groups B and C, there was no evidence that the manufacturing of a gastric tube reduced esophagitis and Barrett's esophagus. However, when comparing groups A and C, omeprazole use was correlated with reduction of reflux complications such as esophagitis and Barrett's esophagus (p <0.005). Conclusion : The use of omeprazole (40 mg/day) reduced the onset of erosive esophagitis and Barrett's esophagus during the late postoperative period.
Resumo:
C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.
Resumo:
Asclepias mellodora St. Hil. is a native acute toxic species frequent in the grasslands of the Buenos Aires province, Argentina, whose toxicity had not been assessed until now. This study evaluates the minimal lethal dose of this species for sheep, and the possibility of microscopically recognizing its fragments in gastrointestinal contents as a complementary diagnostic tool in necropsies. Three Frisona sheep (average LW=55±4.5 kg) were dosed via an esophageal tube with each one of the following doses of asclepias: 8.0, 5.0, 2.0 and 0.8 g DM.kg LW-1. Sheep poisoned with the three higher doses died between 10 and 85 h after intoxication, but those receiving the lower dose did not. During necropsies we: 1) determined the dry weight of the contents of rumen+reticulum, omasum+abomasum, and large intestine, 2) estimated the percentages of asclepias fragments by microanalysis correcting for digestion effects on fragment recognition, and 3) calculated the total mass of asclepias in the digestive tract of each animal. For the three higher doses, the mass of asclepias identified in the total ingesta was 12.3±3.4% of the amount supplied, possibly because of the strong diarrhea its ingestion produced. The percentages of asclepias in rumen+reticulum did not differ from the average quantified for the entire tract. The results of this study indicate that the minimal lethal doses of asclepias for sheep is between 2.0 and 0.8g DM·kg LW-1, and that the microhistological analysis of the rumen+reticulum, the easiest region to sample, can be used to confirm the ingestion of this toxic species, although the estimated percentage will be not a good estimator of the ingested percentage.
Resumo:
Cancer is a leading cause of death worldwide accounting for 13% of all deaths in 2005. The spread of cancer and formation of metastases is the major cause of mortality among cancer patients. The spread of cancer is based on the cancer cell’s ability to break away from the surrounding tissue and to migrate into new areas in the body. The ability of cells to bind its surroundings and to move is controlled by the mechanical cell surface adhesion receptors called the integrins. Integrins have a critical role in cell adhesion, cell motility and tissue homeostasis. By communicating with ECM, integrins transmit signals from the surrounding environment inside the cell and modulate the function of many important signalling pathways involved in cell survival, development, gene expression, proliferation, motility and cytoskeletal organization. During cell migration integrin-matrix adhesions are formed in front of the cell while rear-adhesions are released during migration. Integrins are endocytosed from the plasma-membrane into the cytoplasm and partly recycled back to new adhesion sites in a process called integrin trafficking. Also, the cell cytoskeleton and protrusions are important in cell migration. Finger-like actin protrusions called filopodia display an interesting cancer relevant cooperation with integrins that is required for cell migration. The expression and function of integrins changes markedly as cells acquire carcinogenic properties. Changed integrin function is partly responsible for detachment of tumor cells from neighbouring cells and for providing enhanced invasive capabilities for tumor cells to disseminate. Similarly, the formation of filopodia is increased in cancer. High myosin-10 expression is related to poor outcome in breast cancer and increased cell migration. The proper function of myosin-10 induced filopodia needs association with β1 integrins. The importance of integrin trafficking and filopodia formation is becoming increasingly more recognized in cancer. This thesis focusses on the role of integrins, integrin trafficking and myosin-10 induced filopodia cancer cell migration.
Resumo:
The aim of this study was to compare different staining methods for the evaluation of sperm morphology by light microscopy and also to describe the morphometry of the entire sperm in collared peccaries (Pecari tajacu). Semen from 10 males was obtained by electroejaculation and evaluated for sperm motility, vigor, and concentration. Semen smears were prepared through three different staining methods: Bengal rose, brome-phenol blue, and eosin-nigrosin. Smears were evaluated under light microscopy and sperm morphologic alterations were determined in percentage. In addition, sperm morphometric analysis was conducted by light microscopy coupled to image analyzer software. The smears stained with Bengal Rose provide the best results for the visualization of the sperm tail, midpiece, and head. The use of eosin-nigrosin stain did not allow an adequate impregnation, and some sperm presented a few contrasts with the background. A higher incidence of bent coiled tails was verified in the use of brome-phenol blue staining (P<0.05). Through morphometric evaluation, it was observed that the tail occupies the greatest proportion (89%) of the sperm which presents a discretely elongated head. According to the results, the use of the Bengal Rose stain is recommended for the morphologic evaluation of the collared peccary sperm.
Resumo:
Abstract: Bull breeding soundness evaluation (BBSE) is a method applied to reduce the risk of using subfertile bulls in herds. There are currently two BBSE systems, those of the Society for Theriogenology (SFT) and the Western Canadian Association of Bovine Practitioners (WCABP). Scrotal circumference (SC), sperm motility (SM) and normal sperm (NS) of 454 bulls aged between 12 and 15 months of a Spanish beef breed were used to compare both systems, and since there is no agreement on that BBSE system must be applied in Spain, a single one was proposed for its consideration. SC was adjusted to 15 months (SC15) and the mean of the BBSE traits was: SC15 (34.2±2.4cm), SM (76.6±14.6%) and NS (76.8±12.3%). In the PROPOSED system, the SM and NS thresholds were those defined by the WCABP system, while the SC15 thresholds were set by combining the SFT threshold and SC15±1SD in order to establish four classification categories, the three proposed by the WCABP system: unsatisfactory, questionable and satisfactory, and other category, called superior, for bulls with SM≥60%, NS≥70% and SC15≥Mean+1SD. The PROPOSED system scored fewer bulls as unsatisfactory than the SFT and the WCABP systems (8.6%, 23.6% and 22.5%, respectively; P<0.01), while the percentage of bulls from worst to best in the other three categories under the PROPOSED system was: 26.0%, 54.2% and 11.2%, respectively. In conclusion, the PROPOSED system gives more emphasis to SC, sets differences between bulls classified as satisfactory by the other systems and can be considered a good system for Spain and for other countries that have no defined their own system.
Resumo:
Ninety-six weanling male Wistar rats were fed for four weeks one of two different chows: a normal rat chow containing 55.5% (w/w) starch (control group, N = 48) or a rat chow in which starch was partially replaced by lactose, in such a way that the experimental group (N = 48) received 35.5% (w/w) starch and 20% (w/w) lactose. The gastric emptying of fluid was then studied by measuring the gastric retention of four test meals containing lactose (5% or 10%, w/v) or glucose + galactose (5% or 10%, w/v). Homogenates of the small intestine were assayed for lactase activity. The gastric retention values were obtained 15 min after orogastric infusion of the liquid meals. The median values for gastric retention of the 5% lactose solutions were 37.7% for the control group and 37.0% for the experimental group (P>0.02). For the 10% lactose solution the median values were 51.2% and 47.9% (P>0.02) for the control and experimental groups, respectively. However, for the 2.5% glucose + 2.5% galactose meal the median gastric retention was lower (P<0.02) in the group fed a lactose-enriched chow (38.5%) than in the control group (41.6%). For the 5% glucose + 5% galactose solution the median values were not statistically different between groups, 65.0% for the control group and 58.8% for the experimental group. The median values of the specific lactase activity in the small intestine homogenate was 0.74 U/g in the control group and 0.91 U/g in the experimental group. These values were not statistically different (P>0.05). These results suggest that the prolonged ingestion of lactose by young adult rats changes the gastric emptying of a solution containing 5% monosaccharides. This adaptation may reflect the desensitization of intestinal nutrient receptors, possibly by an osmotic effect of lactose present in the chow.
Resumo:
We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.
Resumo:
The effects of dorsomedial hypothalamic (DMH) nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g). DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure). In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH) nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure). The medial hypothalamus (MH) was also lesioned separately using a nichrome electrode (0.3-mm tip exposure) with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v) plus phenol red dye (6 mg/dl) as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05) gastric emptying (24.7% gastric retention, N = 11) than control (33.0% gastric retention, N = 8) and sham-lesioned (33.5% gastric retention, N = 12) rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7) than control (33.4% gastric retention, N = 17) and VMH-lesioned (34.6% gastric retention, N = 7) rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7) than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for the DMH in the regulation of gastric motility
Resumo:
The gastric emptying of liquids was investigated in male Wistar rats (8 to 10 weeks old, 210-300 g) dehydrated by water deprivation. In this model of dehydration, weight loss, hematocrit and plasma density were significantly higher in the dehydrated animals than in the control groups after 48 and 72 h of water deprivation (P<0.05). Three test meals (saline (N = 10), water (N = 10) and a WHO rehydrating solution containing in one liter 90 mEq sodium, 20 mEq potassium, 80 mEq chloride and 30 mEq citrate (N = 10)) were used to study gastric emptying following water deprivation for 24, 48 and 72 h. After 72 h, gastric emptying of the water (39.4% retention) and rehydrating solution (49.2% retention) test meals was significantly retarded compared to the corresponding control groups (P<0.05, Mann-Whitney test). The 72-h period of deprivation was used to study the recovery from dehydration, and water was supplied for 60 or 120 min after 67 h of deprivation. Body weight loss, hematocrit and plasma density tended to return to normal when water was offered for 120 min. In the animals supplied with water for 60 min, there was a recovery in the gastric emptying of water while the gastric emptying of the rehydrating solution was still retarded (53.1% retention; P<0.02, Kruskal-Wallis test). In the group supplied with water for 120 min, the gastric emptying of the rehydrating (51.7% retention) and gluco-saline (46.0% retention) solutions tended to be retarded (P = 0.04, Kruskal-Wallis test). In this model of dehydration caused by water deprivation, with little alteration in the body electrolyte content, gastric emptying of the rehydrating solution was retarded after rehydration with water. We conclude that the mechanisms whereby receptors in the duodenal mucosa can modify gastric motility are altered during dehydration caused by water deprivation
Resumo:
The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.