963 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store relevant information onto their design objects in the form of messages, annotations and external web links. We studied the use of CAM in a Product Design studio over three weeks, involving three different design teams. In this paper, we briefly describe CAM and show how it serves as 'object memory'.
Resumo:
The role of material artefacts in supporting distributed and co-located work practices has been well acknowledged within HCI and CSCW research. In this paper, we show that in addition to their ecological, coordinative and organizational support, artefacts also play an 'experiential' role. In this case, artefacts not only improve efficiency or have a purely functional role (e.g. allowing people to complete tasks quickly), but the materiality, use and manifestations of these artefacts bring quality and richness to people's performance and help them make better sense of their everyday lives. In a domain such as industrial design, such artefacts play an important role for supporting creativity and innovation. Based on our ethnographic fieldwork on understanding cooperative design practices of industrial design students and researchers, we describe several experiential practices that are supported by design-related artefacts such as sketches, drawings, physical models and explorative prototypes -- used and developed in designers' everyday work. Our main intention in carrying out this kind of research is to develop technologies to support designers' everyday practices. We believe that with the emergence of ubiquitous computing, there is a growing need to focus on the personal, social and creative side of people's everyday experiences. By focusing on the experiential practices of designers, we can provide a much broader view in the design of new interactive technologies.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.
Resumo:
The University of Queensland (UQ) has extensive laboratory facilities associated with each course in the undergraduate electrical engineering program. The laboratories include machines and drives, power systems simulation, power electronics and intelligent equipment diagnostics. A number of postgraduate coursework programs are available at UQ and the courses associated with these programs also use laboratories. The machine laboratory is currently being renovated with i-lab style web based experimental facilities, which could be remotely accessed. Senior level courses use independent projects using laboratory facilities and this is found to be very useful to improve students' learning skill. Laboratory experiments are always an integral part of a course. Most of the experiments are conducted in a group of 2-3 students and thesis projects in BE and major projects in ME are always individual works. Assessment is done in-class for the performance and also for the report and analysis.
Resumo:
Enterprise resource planning (ERP) systems are rapidly being combined with “big data” analytics processes and publicly available “open data sets”, which are usually outside the arena of the enterprise, to expand activity through better service to current clients as well as identifying new opportunities. Moreover, these activities are now largely based around relevant software systems hosted in a “cloud computing” environment. However, the over 50- year old phrase related to mistrust in computer systems, namely “garbage in, garbage out” or “GIGO”, is used to describe problems of unqualified and unquestioning dependency on information systems. However, a more relevant GIGO interpretation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems based around ERP and open datasets as well as “big data” analytics, particularly in a cloud environment, the ability to verify the authenticity and integrity of the data sets used may be almost impossible. In turn, this may easily result in decision making based upon questionable results which are unverifiable. Illicit “impersonation” of and modifications to legitimate data sets may become a reality while at the same time the ability to audit any derived results of analysis may be an important requirement, particularly in the public sector. The pressing need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment is discussed in this paper. Some current and appropriate technologies currently being offered are also examined. However, severe limitations in addressing the problems identified are found and the paper proposes further necessary research work for the area. (Note: This paper is based on an earlier unpublished paper/presentation “Identity, Addressing, Authenticity and Audit Requirements for Trust in ERP, Analytics and Big/Open Data in a ‘Cloud’ Computing Environment: A Review and Proposal” presented to the Department of Accounting and IT, College of Management, National Chung Chen University, 20 November 2013.)
Resumo:
One of the concerns about the use of Bluetooth MAC Scanner (BMS) data, especially from urban arterial, is the bias in the travel time estimates from multiple Bluetooth devices being transported by a vehicle. For instance, if a bus is transporting 20 passengers with Bluetooth equipped mobile phones, then the discovery of these mobile phones by BMS will be considered as 20 different vehicles, and the average travel time along the corridor estimated from the BMS data will be biased with the travel time from the bus. This paper integrates Bus Vehicle Identification system with BMS network to empirically evaluate such bias, if any. The paper also reports an interesting finding on the uniqueness of MAC IDs.
Resumo:
This paper makes a formal security analysis of the current Australian e-passport implementation using model checking tools CASPER/CSP/FDR. We highlight security issues in the current implementation and identify new threats when an e-passport system is integrated with an automated processing system like SmartGate. The paper also provides a security analysis of the European Union (EU) proposal for Extended Access Control (EAC) that is intended to provide improved security in protecting biometric information of the e-passport bearer. The current e-passport specification fails to provide a list of adequate security goals that could be used for security evaluation. We fill this gap; we present a collection of security goals for evaluation of e-passport protocols. Our analysis confirms existing security weaknesses that were previously identified and shows that both the Australian e-passport implementation and the EU proposal fail to address many security and privacy aspects that are paramount in implementing a secure border control mechanism. ACM Classification C.2.2 (Communication/Networking and Information Technology – Network Protocols – Model Checking), D.2.4 (Software Engineering – Software/Program Verification – Formal Methods), D.4.6 (Operating Systems – Security and Privacy Protection – Authentication)
Resumo:
Recently a new human authentication scheme called PAS (predicate-based authentication service) was proposed, which does not require the assistance of any supplementary device. The main security claim of PAS is to resist passive adversaries who can observe the whole authentication session between the human user and the remote server. In this paper we show that PAS is insecure against both brute force attack and a probabilistic attack. In particular, we show that its security against brute force attack was strongly overestimated. Furthermore, we introduce a probabilistic attack, which can break part of the password even with a very small number of observed authentication sessions. Although the proposed attack cannot completely break the password, it can downgrade the PAS system to a much weaker system similar to common OTP (one-time password) systems.
Resumo:
Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.
Resumo:
Secure multi-party computation (MPC) protocols enable a set of n mutually distrusting participants P 1, ..., P n , each with their own private input x i , to compute a function Y = F(x 1, ..., x n ), such that at the end of the protocol, all participants learn the correct value of Y, while secrecy of the private inputs is maintained. Classical results in the unconditionally secure MPC indicate that in the presence of an active adversary, every function can be computed if and only if the number of corrupted participants, t a , is smaller than n/3. Relaxing the requirement of perfect secrecy and utilizing broadcast channels, one can improve this bound to t a < n/2. All existing MPC protocols assume that uncorrupted participants are truly honest, i.e., they are not even curious in learning other participant secret inputs. Based on this assumption, some MPC protocols are designed in such a way that after elimination of all misbehaving participants, the remaining ones learn all information in the system. This is not consistent with maintaining privacy of the participant inputs. Furthermore, an improvement of the classical results given by Fitzi, Hirt, and Maurer indicates that in addition to t a actively corrupted participants, the adversary may simultaneously corrupt some participants passively. This is in contrast to the assumption that participants who are not corrupted by an active adversary are truly honest. This paper examines the privacy of MPC protocols, and introduces the notion of an omnipresent adversary, which cannot be eliminated from the protocol. The omnipresent adversary can be either a passive, an active or a mixed one. We assume that up to a minority of participants who are not corrupted by an active adversary can be corrupted passively, with the restriction that at any time, the number of corrupted participants does not exceed a predetermined threshold. We will also show that the existence of a t-resilient protocol for a group of n participants, implies the existence of a t’-private protocol for a group of n′ participants. That is, the elimination of misbehaving participants from a t-resilient protocol leads to the decomposition of the protocol. Our adversary model stipulates that a MPC protocol never operates with a set of truly honest participants (which is a more realistic scenario). Therefore, privacy of all participants who properly follow the protocol will be maintained. We present a novel disqualification protocol to avoid a loss of privacy of participants who properly follow the protocol.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
The cryptographic hash function literature has numerous hash function definitions and hash function requirements, and many of them disagree. This survey talks about the various definitions, and takes steps towards cleaning up the literature by explaining how the field has evolved and accurately depicting the research aims people have today.
Resumo:
The current research extends our knowledge of the main effects of attitude, subjective norm, and perceived control over the individual’s technology adoption. We propose a critical buffering role of social influence on the collectivistic culture in the relationship between attitude, perceived behavioral control, and Information Technology (IT) adoption. Adoption behavior was studied among 132 college students being introduced to a new virtual learning system. While past research mainly treated these three variables as being in parallel relationships, we found a moderating role for subjective norm on technology attitude and perceived control on adoption intent. Implications and limitations for understating the role of social influence in the collectivistic society are discussed.
Resumo:
Bandwidths and offsets are important components in vehicle traffic control strategies. This article proposes new methods for quantifying and selecting them. Bandwidth is the amount of green time available for vehicles to travel through adjacent intersections without the requirement to stop at the second traffic light. The offset is the difference between the starting-time of ``green'' periods at two adjacent intersections, along a given route. The core ideas in this article were developed during the 2013 Maths and Industry Study Group in Brisbane, Australia. Analytical expressions for computing bandwidth, as a function of offset, are developed. An optimisation model, for selecting offsets across an arterial, is proposed. Arterial roads were focussed upon, as bandwidth and offset have a greater impact on these types of road as opposed to a full traffic network. A generic optimisation-simulation approach is also proposed to refine an initial starting solution, according to a specified metric. A metric that reflects the number of stops, and the distance between stops, is proposed to explicitly reduce the dissatisfaction of road users, and to implicitly reduce fuel consumption and emissions. Conceptually the optimisation-simulation approach is superior as it handles real-life complexities and is a global optimisation approach. The models and equations in this article can be used in road planning and traffic control.