947 resultados para Effect modification
Resumo:
PURPOSE. To examine the deposition of tear phospholipids and cholesterol onto worn contact lenses and the effect of lens material and lens care solution. METHODS. Lipids were extracted from tears and worn contact lenses using 2:1 chloroform: Methanol and the extract washed with aqueous ammonium acetate, before analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS. Twenty-three molecular lipids from the sphingomyelin (SM) and phosphatidylcholine (PC) classes were detected in tears, with total concentrations of each class determined to be 5 ± 1 pmol/μL (~3.8 μg/mL) and 6 ± 1 pmol/μL (~ 4.6μg/mL), respectively. The profile of individual phospholipids in both of these classes was shown to be similar in contact lens deposits. Deposition of representative polar and nonpolar lipids were shown to be significantly higher on senofilcon A contact lenses, with ~59 ng/lens SM, 195 ng/lens PC, and 9.9 μg/lens cholesterol detected, whereas balafilcon A lens extracts contained ~19 ng/lens SM, 19 ng/lens PC, and 3.9 μg/lens cholesterol. Extracts from lenses disinfected and cleaned with two lens care solutions showed no significant differences in total PC and SM concentrations; however, a greater proportion of PC than SM was observed, compared with that in tears. CONCLUSIONS. Phospholipid deposits extracted from worn contact lenses show a molecular profile similar to that in tears. The concentration of representative polar and nonpolar lipids deposited onto contact lenses is significantly affected by lens composition. There is a differential efficacy in the removal of PC and SM with lens care solutions.
Resumo:
Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
The current research extends our knowledge of the main effects of attitude, subjective norm, and perceived control over the individual’s technology adoption. We propose a critical buffering role of social influence on the collectivistic culture in the relationship between attitude, perceived behavioral control, and Information Technology (IT) adoption. Adoption behavior was studied among 132 college students being introduced to a new virtual learning system. While past research mainly treated these three variables as being in parallel relationships, we found a moderating role for subjective norm on technology attitude and perceived control on adoption intent. Implications and limitations for understating the role of social influence in the collectivistic society are discussed.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In some applications in the building industry LSBs are used with only one web side plate (WSP) at their supports and are not used with full height web side plates (WSP) at their supports. Past research studies showed that theses real support connections did not provide simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. A total of 28 experimental tests were conducted as part of the studies. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitable support connections were developed to improve the shear capacity of LSBs based on test results.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (ζ) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (?) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.
Resumo:
This study investigates how the interaction of institutional market orientation and external search breadth influence the ability to use absorptive capacity to raise the level of corporate entrepreneurship. The findings of a sample of 331 supplier companies providing products and services to the mining industry of Australia and Iran indicate that the positive association between absorptive capacity and corporate entrepreneurship is stronger for companies with greater external knowledge search breadth. Moreover, operating in a less market-oriented institutional context such as, Iran diminishes the ability to utilise a firm’s absorptive capacity to raise their level of corporate entrepreneurship. Yet, firms operating in such contexts are able to overcome these disadvantages posed by their institutional context by engaging in broader external search of knowledge.
Resumo:
Many young firms face significant resource constraints during attempts to develop and grow. One promising theory that explicitly links to resource constraints is bricolage: a construct developed by Levi Strauss (1967). Bricolage aligns with notions of resourcefulness: using what’s on hand, through making do, and recombining resources for new or novel purposes. In this paper we further theorize and test the moderating effects of ownership team composition on bricolage and firm performance. Our findings suggest that team size, strong network ties, and functionality enhance the effects of bricolage in young firm performance.
Resumo:
Background The majority of introns in gene transcripts are found within the coding sequences (CDSs). A small but significant fraction of introns are also found to reside within the untranslated regions (5′UTRs and 3′UTRs) of expressed sequences. Alignment of the whole genome and expressed sequence tags (ESTs) of the model plant Arabidopsis thaliana has identified introns residing in both coding and non-coding regions of the genome. Results A bioinformatic analysis revealed some interesting observations: (1) the density of introns in 5′UTRs is similar to that in CDSs but much higher than that in 3′UTRs; (2) the 5′UTR introns are preferentially located close to the initiating ATG codon; (3) introns in the 5′UTRs are, on average, longer than introns in the CDSs and 3′UTRs; and (4) 5′UTR introns have a different nucleotide composition to that of CDs and 3′UTR introns. Furthermore, we show that the 5′UTR intron of the A. thaliana EFIα-A3 gene affects the gene expression and the size of the 5′UTR intron influences the level of gene expression. Conclusion Introns within the 5′UTR show specific features that distinguish them from introns that reside within the coding sequence and the 3′UTR. In the EFIα-A3 gene, the presence of a long intron in the 5′UTR is sufficient to enhance gene expression in plants in a size dependent manner.
Resumo:
The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. This investigation shows that the removal of fluoride using red mud is significantly improved if red mud is initially acidified. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡ SOH2+ and ≡ SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡ SOH2+ as the substitution of a fluoride ion doesn’t cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud.