876 resultados para Dynamics control systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes an architecture for robotic telepresence and teleoperation based on the well known tools ROS and Skype. We discuss how Skype can be used as a framework for robotic communication and can be integrated into a ROS/Linux framework to allow a remote user to not only interact with people near the robot, but to view maps, sensory data, robot pose and to issue commands to the robot’s navigation stack. This allows the remote user to exploit the robot’s autonomy, providing a much more convenient navigation interface than simple remote joysticking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a high-speed, 100Hz, visionbased state estimator that is suitable for quadrotor control in close quarters manoeuvring applications. We describe the hardware and algorithms for estimating the state of the quadrotor. Experimental results for position, velocity and yaw angle estimators are presented and compared with motion capture data. Quantitative performance comparison with state-of-the-art achievements are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behaviour through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the implementation of the first portable, embedded data acquisition unit (BabelFuse) that is able to acquire and timestamp generic sensor data and trigger General Purpose I/O (GPIO) events against a microsecond-accurate wirelessly-distributed ‘global’ clock. A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fast-moving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment especially if non-deterministic communication hardware (such as IEEE-802.11-based wireless) and inaccurate clock synchronisation protocols are used. The issue of differing timebases makes correlation of data difficult and prevents the units from reliably performing synchronised operations or manoeuvres. By utilising hardware-assisted timestamping, clock synchronisation protocols based on industry standards and firmware designed to minimise indeterminism, an embedded data acquisition unit capable of microsecond-level clock synchronisation is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of automatically estimating the relative pose between a push-broom LIDAR and a camera without the need for artificial calibration targets or other human intervention. Further we do not require the sensors to have an overlapping field of view, it is enough that they observe the same scene but at different times from a moving platform. Matching between sensor modalities is achieved without feature extraction. We present results from field trials which suggest that this new approach achieves an extrinsic calibration accuracy of millimeters in translation and deci-degrees in rotation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The building sector is the dominant consumer of energy and therefore a major contributor to anthropomorphic climate change. The rapid generation of photorealistic, 3D environment models with incorporated surface temperature data has the potential to improve thermographic monitoring of building energy efficiency. In pursuit of this goal, we propose a system which combines a range sensor with a thermal-infrared camera. Our proposed system can generate dense 3D models of environments with both appearance and temperature information, and is the first such system to be developed using a low-cost RGB-D camera. The proposed pipeline processes depth maps successively, forming an ongoing pose estimate of the depth camera and optimizing a voxel occupancy map. Voxels are assigned 4 channels representing estimates of their true RGB and thermal-infrared intensity values. Poses corresponding to each RGB and thermal-infrared image are estimated through a combination of timestamp-based interpolation and a pre-determined knowledge of the extrinsic calibration of the system. Raycasting is then used to color the voxels to represent both visual appearance using RGB, and an estimate of the surface temperature. The output of the system is a dense 3D model which can simultaneously represent both RGB and thermal-infrared data using one of two alternative representation schemes. Experimental results demonstrate that the system is capable of accurately mapping difficult environments, even in complete darkness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An onboard payload may be seen in most instances as the “Raison d’Etre” for a UAV. It will define its capabilities, usability and hence market value. Large and medium UAV payloads exhibit significant differences in size and computing capability when compared with small UAVs. The latter have stringent size, weight, and power requirements, typically referred as SWaP, while the former still exhibit endless appetite for compute capability. The tendency for this type of UAVs (Global Hawk, Hunter, Fire Scout, etc.) is to increase payload density and hence processing capability. An example of this approach is the Northrop Grumman MQ-8 Fire Scout helicopter, which has a modular payload architecture that incorporates off-the-shelf components. Regardless of the UAV size and capabilities, advances in miniaturization of electronics are enabling the replacement of multiprocessing, power-hungry general-purpose processors for more integrated and compact electronics (e.g., FPGAs). Payloads play a significant role in the quality of ISR (intelligent, surveillance, and reconnaissance) data, and also in how quick that information can be delivered to the end user. At a high level, payloads are important enablers of greater mission autonomy, which is the ultimate aim in every UAV. This section describes common payload sensors and introduces two examples cases in which onboard payloads were used to solve real-world problems. A collision avoidance payload based on electro optical (EO) sensors is first introduced, followed by a remote sensing application for power line inspection and vegetation management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.