891 resultados para Drop down


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Iron is essential for oxygen transport because it is incorporated in the heme of the oxygen-binding proteins hemoglobin and myoglobin. An interaction between iron homeostasis and oxygen regulation is further suggested during hypoxia, in which hemoglobin and myoglobin syntheses have been reported to increase. This study gives new insights into the changes in iron content and iron-oxygen interactions during enhanced erythropoiesis by simultaneously analyzing blood and muscle samples in humans exposed to 7 to 9 days of high altitude hypoxia (HA). HA up-regulates iron acquisition by erythroid cells, mobilizes body iron, and increases hemoglobin concentration. However, contrary to our hypothesis that muscle iron proteins and myoglobin would also be up-regulated during HA, this study shows that HA lowers myoglobin expression by 35% and down-regulates iron-related proteins in skeletal muscle, as evidenced by decreases in L-ferritin (43%), transferrin receptor (TfR; 50%), and total iron content (37%). This parallel decrease in L-ferritin and TfR in HA occurs independently of increased hypoxia-inducible factor 1 (HIF-1) mRNA levels and unchanged binding activity of iron regulatory proteins, but concurrently with increased ferroportin mRNA levels, suggesting enhanced iron export. Thus, in HA, the elevated iron requirement associated with enhanced erythropoiesis presumably elicits iron mobilization and myoglobin down-modulation, suggesting an altered muscle oxygen homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]En este proyecto la alumna ha desarrollado la demo jugable de un videojuego en 2D con perspectiva top-down. El juego transcurre en un zoológico, con un mono como protagonista, y el objetivo del mismo es lograr escapar al tiempo que se evita a los empleados del zoo. Para conseguir huir, el jugador tendrá que obtener algunos objetos y liberar a otros animales. En la propia demo se pueden consultar los controles y las distintas opciones disponibles. Para la creación del juego se ha utilizado el motor de juegos Unity 5 (edición personal) y recursos obtenidos de diversas fuentes de contenido gratuito.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desmosomen sind hoch organisierte adhäsive interzelluläre Verbindungen, die benachbarte Zellen durch Verankerung mit den Intermediärfilamenten des Zytoskeletts miteinander verknüpfen und so Zellen und Geweben Stabilität verleihen. Die Adhäsionsmoleküle der Desmosomen sind die desmosomalen Cadherine. Diese transmembranen Glykoproteine gehen im Interzellulärraum Verbindungen mit den desmosomalen Cadherinen der Nachbarzelle ein und sind im zytoplasmatischen Bereich Anheftungspunkte für weitere an der Desmosomenbildung beteiligte Proteine. Ziel dieser Arbeit war die Untersuchung der Rolle von Desmoglein 2 (Dsg 2), einem in allen Epithelien exprimierten desmosomalen Cadherin. Da der konstitutive knock out von Dsg 2 embryonal letal ist, wurde im Rahmen dieser Doktorarbeit eine transgene Maus generiert, in der die Reduktion von Dsg 2 temporär regulierbar war (konditionaler knock down). Dazu wurde der Mechanismus der RNA Interferenz genutzt, wodurch Sequenz-spezifische, post-transkriptionelle Regulation von Genen möglich ist. Unter Verwendung eines über Cre/lox-induzierbaren Vektors wurden transgene Mäuse generiert, welche nach Induktion Dsg 2 shRNA exprimieren, die in der Zelle in siRNA umgewandelt wird und zum Abbau der Dsg 2 mRNA führt. Durch Verpaarung der generierten Dsg 2 knock down Maus mit der über Tamoxifen induzierbaren Cre Deleter knock in Mauslinie Rosa26CreERT2 konnte deutliche Reduktion der Dsg 2 Proteinmenge in Leber, Darm und Herz erreicht werden. In Immunfärbungen der Leber wurde zudem eine reduzierte Desmosomenbildung durch Expression der Dsg 2 shRNA detektiert. Die für diese Versuche generierte und getestete Rosa26CreERT2 Mauslinie ermöglichte jedoch nicht in allen Zellen eines Gewebes die komplette Aktivierung der Cre Rekombinase und damit die Expression der shRNA. Dadurch entstanden mosaikartige Wildtyp/knock down-Gewebe, in denen noch ausreichend Desmosomen gebildet wurden, um die Gewebestabilität und -struktur zu erhalten. Für eine funktionale Untersuchung von Dsg 2 in Zusammenhang mit der chronisch entzündlichen Darmerkrankung Colitis ulcerosa wurden die Dsg 2 knock down Mäuse mit Darm-spezifischen, induzierbaren Cre Deleter Mäusen (VillinCreERT2) verpaart. Nach Aktivierung der Cre Rekombinase mittels Tamoxifen wurde in bitransgenen Tieren über Gabe von Azoxymethan (AOM) und Dextransodiumsulfat (DSS) Colitis ulcerosa induziert. Diese entzündliche Erkrankung des Darms ist mit der Induktion von Darmtumoren assoziiert. Bereits nach einmaliger Induktion mit AOM/DSS wurde in der ersten endoskopischen Untersuchung eine starke Entzündung des Darmgewebes und die Ausbildung von flächig wachsenden Tumoren in den Dsg 2 knock down Tieren hervorgerufen. Es ist anzunehmen, dass durch knock down von Dsg 2, und die damit verbundene verminderte Desmosomenbildung und Zelladhäsion, Infiltration von Bakterien durch die epitheliale Barriere des Darms möglich war, und so die Entzündungsreaktion in der Darmmukosa verstärkte. In Zusammenhang mit Verlust der epithelialen Festigkeit durch verringerte Zellkontakte kam es zur Hyperproliferation der Darmmukosa, die sich in Ausbildung von flächigen Tumoren äußerte. In weiteren Experimenten müssen nun die Tumore und das entzündete Gewebe der Colitis-induzierten Mäuse mittels Immunfluoreszenz untersucht werden, um Veränderungen in der Desmosomenformation in situ detektieren zu können. Des Weiteren sind Verpaarungen der Dsg 2 knock down Maus mit anderen Cre Rekombinase exprimierenden Mauslinien möglich, um den Einfluss von Dsg 2 auch in anderen Geweben, beispielsweise im Herzen, zu untersuchen. Die hier vorgelegte Arbeit zeigt also erstmalig den ursächlichen Zusammenhang zwischen Dsg 2 und dem Auftreten von Colitis-assoziierten Tumoren in einem konditionalen RNAi-vermittelten knock down Tiermodell. Die Etablierung dieser Maus ist somit das erste konditionale Mausmodell, welches die bei vielen Krebspatienten gefundenen flachzellig wachsenden Tumore in vivo rekapituliert. Vorausschauend kann man sagen, dass mit Hilfe des im Rahmen dieser Doktorarbeit entwickelten Tiermodells wichtige Erkenntnisses über die Pathologie von Darmtumoren erbracht werden können, die unser Verständnis der Colitis-induzierten Tumorentstehung verbessern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0  tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Down Syndrome (DS) is the most known autosomal trisomy, due to the presence in three copies of chromosome 21. Many studies were designed to identify phenotypic and clinical consequences related to the triple gene dosage. However, the general conclusion is a senescent phenotype; in particular, the most features of physiological aging, such as skin and hair changes, vision and hearing impairments, thyroid dysfunction, Alzheimer-like dementia, congenital heart defects, gastrointestinal malformations, immune system changes, appear in DS earlier than in normal age-matched subjects. The only established risk factor for the DS is advanced maternal age, responsible for changes in the meiosis of oocytes, in particular the meiotic nondisjunction of chromosome 21. In this process mitochondria play an important role since mitochondrial dysfunction, due to a variety of extrinsic and intrinsic influences, can profoundly influence the level of ATP generation in oocytes, required for a correct chromosomal segregation. Aim. The aim of this study is to investigate an integrated set of molecular genetic parameters (sequencing of complete mtDNA, heteroplasmy of the mtDNA control region, genotypes of APOE gene) in order to identify a possible association with the early neurocognitive decline observed in DS. Results. MtDNA point mutations do not accumulate with age in our study sample and do not correlate with early neurocognitive decline of DS subjects. It seems that D-loop heteroplasmy is largely not inherited and tends to accumulate somatically. Furthermore, in our study sample no association of cognitive impairment and ApoE genotype is found. Conclusions. Overall, our data cast some doubts on the involvement of these mutations in the decline of cognitive functions observed in DS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress has been implicated in the pathogenesis of a number of diseases including neurodegenerative disorders, cancer, ischemia, etc. Alzheimer’s disease (AD) is histopathologically characterized by the presence of extracellular senile plaque (SP), predominantly consisting of fibrillar amyloid-peptide (Aβ), intracellular neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, and cell loss in the selected regions of the brain. However, the pathogenesis of AD remains largely unknown, but a number of hypothesis were proposed for AD mechanisms, which include: the amyloid cascade, excitotoxicity, oxidative stress and inflammation hypothesis, and all of them are based, to some extent on the role of A. Accumulated evidence indicates that the increased levels of ROS may act as important mediators of synaptic loss and eventually promote formation of neurofibrillary tangles and senile plaques. Therefore a vicious circle between ROS and Aaccumulation may accelerate progression of AD. For these reasons, growing attention has focused on oxidative mechanism of Atoxicity as well as the search for novel neuroprotective agents. A strategy to prevent the oxidative stress in neurons may be the use of chemopreventive agents as inducers of antioxidant and phase 2 enzymes. Sulforaphane (SF), derived from corresponding glucoraphanin, glucosinolate found in abundance in cruciferous vegetables, has recently gained attention as a potential neuroprotective compound inducer of antioxidant phase 2 enzymes. Consistent with this evidence, the study is aimed at identifying the SF ability to prevent and counteract the oxidative damage inducted by oligomers of Aβ (1-42) in terms of impairment in the intracellular redox state and cellular death in differentiated human neuroblastoma and microglia primary cultures. In addition we will evaluated the mechanism underlying the SF neuroprotection activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mental retardation in Down syndrome (DS) has been imputed to the decreased brain volume, which is evident starting from the early phases of development. Recent studies in a widely used mouse model of DS, the Ts65Dn mouse, have shown that neurogenesis is severely impaired during the early phases of brain development, suggesting that this defect may be a major determinant of brain hypotrophy and mental retardation in individuals with DS. Recently, it has been found that in the cerebellum of Ts65Dn mice there is a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting that failure of Shh signaling may underlie the reduced proliferation potency in DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. We found that the expression levels of the Shh receptor Patched1 (Ptch1) were increased compared to controls both at the RNA and protein level. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. We further found that the overexpression of Ptch1 in trisomic NPCs is related to increased levels of AICD, a transcription-promoting fragment of amyloid precursor protein (APP). Increased AICD binding to the Ptch1 promoter favored its acetylated status, thus enhancing Ptch1 expression. Taken together, these data provide novel evidence that Ptch1 over expression underlies derangement of the Shh pathway in trisomic NPCs, with consequent proliferation impairment. The demonstration that Ptch1 over expression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Down syndrome (DS) is a genetic pathology characterized by brain hypotrophy and severe cognitive disability. Although defective neurogenesis is an important determinant of cognitive impairment, a severe dendritic pathology appears to be an equally important factor. It is well established that serotonin plays a pivotal role both on neurogenesis and dendritic maturation. Since the serotonergic system is profoundly altered in the DS brain, we wondered whether defects in the hippocampal development can be rescued by treatment with fluoxetine, a selective serotonin reuptake inhibitor and a widely used antidepressant drug. A previous study of our group showed that fluoxetine fully restores neurogenesis in the Ts65Dn mouse model of DS and that this effect is accompanied by a recovery of memory functions. The goal of the current study was to establish whether fluoxetine also restores dendritic development and maturation. In mice aged 45 days, treated with fluoxetine in the postnatal period P3-P15, we examined the dendritic arbor of newborn and mature granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. Moreover the impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons was fully normalized in treated trisomic mice, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The widespread beneficial effects of fluoxetine on the hippocampal formation suggest that early treatment with fluoxetine can be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions. These findings may open the way for future clinical trials in children and adolescents with DS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal components of NW-based devices. The first part deals with the characterization of electrically active defects in NWs. It has been elaborated the set-up of a general procedure which enables to employ Deep Level Transient Spectroscopy (DLTS) to probe NW arrays’ defects. This procedure has been applied to perform the characterization of a specific system, i.e. Reactive Ion Etched (RIE) silicon NW arrays-based Schottky barrier diodes. This study has allowed to shed light over how and if growth conditions introduce defects in RIE processed silicon NWs. The second part of this thesis concerns the bowing induced by electron beam and the subsequent clustering of gallium arsenide NWs. After a justified rejection of the mechanisms previously reported in literature, an original interpretation of the electron beam induced bending has been illustrated. Moreover, this thesis has successfully interpreted the formation of NW clusters in the framework of the lateral collapse of fibrillar structures. These latter are both idealized models and actual artificial structures used to study and to mimic the adhesion properties of natural surfaces in lizards and insects (Gecko effect). Our conclusion are that mechanical and surface properties of the NWs, together with the geometry of the NW arrays, play a key role in their post-growth alignment. The same parameters open, then, to the benign possibility of locally engineering NW arrays in micro- and macro-templates.