825 resultados para Driving Environment Information Systems.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the processes and the outcomes of the ranking of LIS journal titles by Australia’s LIS researchers during 2007-8, firstly through the Australian federal government’s Research Quality Framework (RQF) process and then its replacement, the Excellence in Research for Australia (ERA) initiative. The requirement to rank the journals titles used came from discussions held at the RQF panel meeting held in February 2007 in Canberra, Australia. While it was recognised that the Web of Science (formerly ISI) journal impact approach of journal acceptance for measures of research quality and impact might not work for LIS, it was apparent that this model would be the default if no other ranking of journal titles became apparent. Although an increasing number of LIS and related discipline journals were appearing in the Web of Science listed rankings, the number was few and it was thus decided by the Australian LIS research community to undertake the ranking exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focusing on the conditions that an optimization problem may comply with, the so-called convergence conditions have been proposed and sequentially a stochastic optimization algorithm named as DSZ algorithm is presented in order to deal with both unconstrained and constrained optimizations. The principle is discussed in the theoretical model of DSZ algorithm, from which we present the practical model of DSZ algorithm. Practical model efficiency is demonstrated by the comparison with the similar algorithms such as Enhanced simulated annealing (ESA), Monte Carlo simulated annealing (MCS), Sniffer Global Optimization (SGO), Directed Tabu Search (DTS), and Genetic Algorithm (GA), using a set of well-known unconstrained and constrained optimization test cases. Meanwhile, further attention goes to the strategies how to optimize the high-dimensional unconstrained problem using DSZ algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What informs members of the church community as they learn? Do the ways people engage with information differ according to the circumstances in which they learn? Informed learning, or the ways in which people use information in the learning experience and the degree to which they are aware of that, has become a focus of contemporary information literacy research. This essay explores the nature of informed learning in the context of the church as a learning community. It is anticipated that insights resulting from this exploration may help church organisations, church leaders and lay people to consider how information can be used to grow faith, develop relationships, manage the church and respond to religious knowledge, which support the pursuit of spiritual wellness and the cultivation of lifelong learning. Information professionals within the church community and the broader information profession are encouraged to foster their awareness of the impact that engagement with information has in the learning experience and in the prioritising of lifelong learning in community contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choi et al. recently proposed an efficient RFID authentication protocol for a ubiquitous computing environment, OHLCAP(One-Way Hash based Low-Cost Authentication Protocol). However, this paper reveals that the protocol has several security weaknesses : 1) traceability based on the leakage of counter information, 2) vulnerability to an impersonation attack by maliciously updating a random number, and 3) traceability based on a physically-attacked tag. Finally, a security enhanced group-based authentication protocol is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and dynamics of a modern business environment are very hard to model using traditional methods. Such complexity raises challenges to effective business analysis and improvement. The importance of applying business process simulation to analyze and improve business activities has been widely recognized. However, one remaining challenge is the development of approaches to human resource behavior simulation. To address this problem, we describe a novel simulation approach where intelligent agents are used to simulate human resources by performing allocated work from a workflow management system. The behavior of the intelligent agents is driven a by state transition mechanism called a Hierarchical Task Network (HTN). We demonstrate and validate our simulator via a medical treatment process case study. Analysis of the simulation results shows that the behavior driven by the HTN is consistent with design of the workflow model. We believe these preliminary results support the development of more sophisticated agent-based human resource simulation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This demonstration showcases a novel prototype application that implements collaborative virtual environment and augmented reality technologies to improve remote collaborative process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in an intuitive shared work and task space. Our tool is easily deployed using open source software, and commodity hardware, and is expected to assist with saving money on travel costs for large scale process modelling projects covering national and international centres within an enterprise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.