964 resultados para Dimensional Hubbard-model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Employing a time dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.
Resumo:
We construct static and time dependent exact soliton solutions for a theory of scalar fields taking values on a wide class of two dimensional target spaces, and defined on the four dimensional space-time S-3 X R. The construction is based on an ansatz built out of special coordinates on S3. The requirement for finite energy introduce boundary conditions that determine an infinite discrete spectrum of frequencies for the oscillating solutions. For the case where the target space is the sphere S-2, we obtain static soliton solutions with nontrivial Hopf topological charges. In addition, such Hopfions can oscillate in time, preserving their topological Hopf charge, with any of the frequencies belonging to that infinite discrete spectrum. (C) 2005 American Institute of Physics.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).
Resumo:
We present a nonperturbative study of the (1 + 1)-dimensional massless Thirring model by using path integral methods. The regularization ambiguities - coming from the computation of the fermionic determinant - allow to find new solution types for the model. At quantum level the Ward identity for the 1PI 2-point function for the fermionic current separates such solutions in two phases or sectors, the first one has a local gauge symmetry that is implemented at quantum level and the other one without this symmetry. The symmetric phase is a new solution which is unrelated to the previous studies of the model and, in the nonsymmetric phase there are solutions that for some values of the ambiguity parameter are related to well-known solutions of the model. We construct the Schwinger-Dyson equations and the Ward identities. We make a detailed analysis of their UV divergence structure and, after, we perform a nonperturbative regularization and renormalization of the model.
Resumo:
We derive the torsion constraints and show the consistency of equations of motion of four-dimensional Type II supergravity in superspace. with Type II sigma model. This is achieved by coupling the four-dimensional compactified Type II Berkovits' superstring to an N = 2 curved background and requiring that the sigma-model has superconformal invariance at tree-level. We compute this in a manifestly 4D N = 2 supersymmetric way. The constraints break the target conformal and SU(2) invariances and the dilaton will be a conformal, SU(2) x U(1) compensator. For Type II superstring in four dimensions, worldsheet supersymmetry requires two different compensators. One type is described by chiral and anti-chiral superfields. This compensator can be identified with a vector multiplet. The other Type II compensator is described by twist-chiral and twist-anti-chiral superfields and can be identified with a tensor hypermultiplet. Also, the superconformal invariance at tree-level selects a particular gauge, where the matter is fixed, but not the compensators. After imposing the reality conditions, we show that the Type II sigma model at tree-level is consistent with the equations of motion for Type II supergravity in the string gauge. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
We investigate the mixing-demixing transition and the collapse in a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex. We solve numerically a quantum-hydrodynamic model based on a new density functional which accurately takes into account the dimensional crossover. It is demonstrated that with the increase of interspecies repulsion, a mixed state of DBFM could turn into a demixed state. The system collapses for interspecies attraction above a critical value which depends on the vortex quantum number. For interspecies attraction just below this critical limit there is almost complete mixing of boson and fermion components. Such mixed and demixed states of a DBFM could be experimentally realized by varying an external magnetic field near a boson-fermion Feshbach resonance, which will result in a continuous variation of interspecies interaction.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)