Stochastic Skellam model


Autoria(s): Kraenkel, Roberto André; Pamplona da Silva, D. J.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/01/2010

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

We consider the dynamics of a biological population described by the Fisher-Kolmogorov Petrovskii-Piskunov (FKPP) equation in the case where the spatial domain consists of alternating favorable and adverse patches whose sizes are distributed randomly. For the one-dimensional case we define a stochastic analogue of the classical critical patch size We address the Issue of persistence of a population and we show that the fraction of the length of favorable segments to the total length is always smaller in the stochastic case than in a periodic arrangement. In this sense, spatial stochasticity favors viability of a population. (C) 2009 Elsevier B.V. All rights reserved.

Formato

60-66

Identificador

http://dx.doi.org/10.1016/j.physa.2009.09.023

Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 389, n. 1, p. 60-66, 2010.

0378-4371

http://hdl.handle.net/11449/24347

10.1016/j.physa.2009.09.023

WOS:000271685900008

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Physica A: Statistical Mechanics and Its Applications

Direitos

closedAccess

Palavras-Chave #Population dynamics #Fisher-Kolmogorov-Petrovski-Piskunov equation #Fragmentation #Spatial stochasticity #Reaction-diffusion
Tipo

info:eu-repo/semantics/article