Stochastic Skellam model
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/01/2010
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) We consider the dynamics of a biological population described by the Fisher-Kolmogorov Petrovskii-Piskunov (FKPP) equation in the case where the spatial domain consists of alternating favorable and adverse patches whose sizes are distributed randomly. For the one-dimensional case we define a stochastic analogue of the classical critical patch size We address the Issue of persistence of a population and we show that the fraction of the length of favorable segments to the total length is always smaller in the stochastic case than in a periodic arrangement. In this sense, spatial stochasticity favors viability of a population. (C) 2009 Elsevier B.V. All rights reserved. |
Formato |
60-66 |
Identificador |
http://dx.doi.org/10.1016/j.physa.2009.09.023 Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 389, n. 1, p. 60-66, 2010. 0378-4371 http://hdl.handle.net/11449/24347 10.1016/j.physa.2009.09.023 WOS:000271685900008 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Physica A: Statistical Mechanics and Its Applications |
Direitos |
closedAccess |
Palavras-Chave | #Population dynamics #Fisher-Kolmogorov-Petrovski-Piskunov equation #Fragmentation #Spatial stochasticity #Reaction-diffusion |
Tipo |
info:eu-repo/semantics/article |