985 resultados para Differential Responses
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
Abstract : This thesis investigated the spatio-temporal brain mechanisms of three processes involved in recognizing environmental sounds produced by living (animal vocalisations) and man-made (manufactured) objects: their discrimination, their plasticity, and the involvement of action representations. Results showed rapid brain discrimination between these categories beginning at ~70ms. Then, beginning at ~150ms, effects of plasticity are observed, without any influence of the categories of sounds. Both of these processes of discrimination and repetition priming involved brain structures located in temporal and frontal lobes. Activation of brain areas BA21 and BA22 suggest an access to semantic representations and/or linked to object manipulation. To investigate the involvement of action representations in sound recognition, analyses were restricted to sounds produced by man-made objects. Results suggest an access to representations linked to action functionally related to sound rather than to representations linked to action that produced sound. These effects occurred at ~300ms post-stimulus onset and involved differential activity brain regions attributed to the mirror neuron system. These data are discussed in regard to motor preparation of actions functionally linked to sounds. Collectively these data showed a sequential progression of cerebral activity underlying the recognizing of environmental sounds. The processes occurred firstly in a shared network of brain areas before propagating elsewhere and/or leading to differential activity in these structures. Cerebral responses observed in this work allowed establishing a dynamic model of discrimination of sounds produced by living and man-made objects.
Resumo:
Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.
Resumo:
Peroxisome proliferator-activated receptors, PPARs, (NR1C) are nuclear hormone receptors implicated in energy homeostasis. Upon activation, these ligand-inducible transcription factors stimulate gene expression by binding to the promoter of target genes. The different structural domains of PPARs are presented in terms of activation mechanisms, namely ligand binding, phosphorylation, and cofactor interaction. The specificity of ligands, such as fatty acids, eicosanoids, fibrates and thiazolidinediones (TZD), is described for each of the three PPAR isotypes, alpha (NR1C1), beta (NR1C2) and gamma (NR1C3), so as the differential tissue distribution of these isotypes. Finally, general and specific functions of the PPAR isotypes are discussed, namely their implication in the control of inflammatory responses, cell proliferation and differentiation, the roles of PPARalpha in fatty acid catabolism and of PPARgamma in adipogenesis.
Resumo:
Mycorrhizal symbioses link the biosphere with the lithosphere by mediating nutrient cycles and energy flow though terrestrial ecosystems. A more mechanistic understanding of these plant-fungal associations may help ameliorate anthropogenic changes to C and N cycles and biotic communities. We explore three interacting principles: (1) optimal allocation, (2) biotic context and (3) fungal adaptability that may help predict mycorrhizal responses to carbon dioxide enrichment, nitrogen eutrophication, invasive species and land-use changes. Plant-microbial feedbacks and thresholds are discussed in light of these principles with the goal of generating testable hypotheses. Ideas to develop large-scale collaborative research efforts are presented. It is our hope that mycorrhizal symbioses can be effectively integrated into global change models and eventually their ecology will be understood well enough so that they can be managed to help offset some of the detrimental effects of anthropogenic environmental change.
Resumo:
This research project analyzes the reactions the teacher has on students' responses. Different techniques as discourse markers, types of questions and repair sequences are taken into account, but the author puts a special emphasis on non-verbal communication. To be aware of all these ways of reacting in a class interaction is essential for an adequate task monitoring
Resumo:
The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.
Resumo:
Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.
Resumo:
Immunotherapy is being proposed to treat patients with hepatocellular carcinoma (HCC). However, more detailed knowledge on tumor Ag expression and specific immune cells is required for the preparation of highly targeted vaccines. HCC express a variety of tumor-specific Ags, raising the question whether CTL specific for such Ags exist in HCC patients. Indeed, a recent study revealed CTLs specific for two cancer-testis (CT) Ags (MAGE-A1 and MAGE-A3) in tumor infiltrating lymphocytes of HCC patients. Here we assessed the presence of T cells specific for additional CT Ags: MAGE-A10, SSX-2, NY-ESO-1, and LAGE-1, which are naturally immunogenic as demonstrated in HLA-A2(+) melanoma patients. In two of six HLA-A2(+) HCC patients, we found that MAGE-A10- and/or SSX-2-specific CD8(+) T cells naturally responded to the disease, because they were enriched in tumor lesions but not in nontumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, providing evidence that these CTL were selected in vivo for high avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid human tumor with clear evidence for in vivo tumor recognition by T cells, providing the rational for specific immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX-2.
Resumo:
Efficient HIV vaccines have to trigger cell-mediated immunity directed against various viral antigens. However little is known about the breadth of the response induced by vaccines carrying multiple proteins. Here, we report on the immunogenicity of a construct harbouring a fusion of the HIV-1 IIIB gag, pol and nef genes (gpn) designed for optimal safety and equimolar expression of the HIV proteins. The attenuated poxviruses, MVA and NYVAC, harbouring the gpn construct, induced potent immune responses in conventional mice characterised by stimulation of Gpn-specific IFN-gamma-producing cells and cytotoxic T cells. In HLA-A2 transgenic mice, recombinant MVA elicited cytotoxic responses against epitopes recognised in most HLA-A2+ HIV-1-infected individuals. We also found that the MVA vaccine triggered the in vitro expansion of peripheral blood cells isolated from a HIV-1-seropositive patient and with similar specificity as found in immunised HLA-A2 transgenic mice. In conclusion, the synthetic HIV polyantigen Gpn delivered by MVA is immunogenic, efficiently processed and presented by human MHC class I molecules.