961 resultados para Diamond electrode
Resumo:
A glassy carbon electrode was pretreated electrochemically and was coated with a copolymer of maleic acid anhydride attached with Eastman-AQ55D (MA/AQ). The voltammetric behavior of a series of biologically important compounds, such as dopamine, L-DOPA, D
Resumo:
A novel type of electrochemical detector based on a polyaniline-dispersed mercury-coated glassy carbon chemically modified electrode was investigated for the detection of monochloramine and dichloramine. A polyaniline dispersed-mercury modified electrode, which was prepared by coating polyaniline on a thin mercury film electrode using fast-sweep voltammetry, was developed. The selectivity could be altered using various counter ions incorporated into the polymer. The results indicated that the use of a conducting polymer-based electrochemical sensor for the selective determination of chloramine is a feasible approach.
Resumo:
A novel device of multiple cylinder microelectrodes coupled with a parallel planar electrode was proposed. The feedback diffusion current at this device was studied using bilinear transformation of coordinates in the diffusion space, where lines of mass flux and equiconcentration are represented by orthogonal circular functions. The derived expression for the steady-state current shows that as the gap between cylindrical microelectrodes and planar electrode diminishes, greatly enhanced currents can be obtained with high signal-to-noise ratio. Other important geometrical parameters such as distance between adjacent microcylinders, cylinder radius, and number of microcylinders were also discussed in detail.
Resumo:
In this paper, the electrochemical behavior of vitamin B-12, ie cyanocobalamin (abbr. VB12) in a weak acidic aqueous solution and adsorbed on glassy carbon (GC) surface (abbr. VB12(ad)/GC) in different pH buffer solutions have been described by using cyclic voltammetry (cv). It is found that VB12 and VB12(ad)/GC exhibit catalytic activity for the electroreduction of O2 according to two reduction peaks at -0.50 and -1.00 V vs. sce; but their electrocatalytic activity is very unstable. Based on the method of hydrodynamic amperometry [B. Miller and S. Bruckenstein, J. electrochem. Soc. 117, 1033 (1970)], some kinetic parameters for the electrocatalytic reduction of O2 by VB12(ad)/GC have been determined rapidly by using a linear rotation-scan method [Rongzhong Jiang and Shaojun Dong, Electrochim. Acta 35, 1451 (1990)]. These kinetic parameters indicate that the reduction of O2 on VB12(ad)/GC gives water predominantly in both potential ranges which correspond to those two reduction peaks. Possible reaction mechanisms have been suggested.
Resumo:
A multi-cylinder microelectrode coupled with a conventional glassy carbon disc electrode (MCM/GC) was prepared and characterized using cyclic voltammetry and chronoamperometry. It was demonstrated that in the same way as one observed a steady-state current at closely spaced microelectrodes when redox recycling takes place, the same effect can be obtained with the MCM/GC device. The experimental results obtained with K3Fe(CN)6 solutions were compared with a previously developed theory. Further, it was demonstrated that with a carbon fibre MCM/GC device, the voltammetric behaviour of dopamine is greatly improved by virtue of redox recycling, hence giving high sensitivity. The steady-state collection current was linearly related to dopamine concentration in the range 1 X 10(-4) to 5 x 10(-7) Mol l-1, and the detection limit was 2 x 10(-7) mol l-1. The influence of coexisting ascorbic acid was also investigated. This device was applied successfully in the determination of dopamine hydrochloride in pharmaceutical preparations.
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
A phosphomolybdic anion doped polypyrrole (PMo12O403- + PPy) film electrode has been prepared by electrochemical polymerization of pyrrole in an aqueous solution of 0.5 mol l-1 H2SO4 or 0.5 mol l-1 KNO3 containing PMo12O403- anions, and characterized by scanning electron microscopy and in-situ UV-visible spectroelectrochemical methods. The film electrode obtained is very stable upon potential cycling in acidic solution, but not in neutral solution. The catalytic effect of the film electrode on the reduction of ClO3- and BrO3- was studied.
Resumo:
Anionic colloid cupric hexacyanoferrate (CuHCF) was incorporated into polypyrrole (PPy) films in the course of electrochemical polymerization of pyrrole from aqueous solution containing pyrrole and CuHCF colloid. The films obtained were dark brown in color. Three redox peaks appeared in the cyclic voltammogram (CV). The peaks around 0.7 V (vs, SCE) showed cation-selective properties. X-ray photoelectron spectroscopic analysis and ultraviolet-visible (UV-vis) spectroscopic properties of the film were investigated.
Resumo:
A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
Functionalized polypyrrole films were prepared electrochemically in the presence of indigo-carmine from aqueous solution. The film shows a couple of reversible redox peaks superimposed on a large background of polypyrrole. The redox reaction is pH dependent. The film has good stability in air and can be cycled between -0.1 and 0.4 V (Ag/AgCl) for several hours without any significant changes in the voltammograms. UV-visible spectra indicate the incorporation of indigo-carmine into the polymer matrix.
Resumo:
Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.
Resumo:
The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.