999 resultados para Dendritic Branching Patterns
Resumo:
Very little research has been conducted so far to study the potential mechanisms of change in long-term active psychological treatments of recurrent depression. The present pilot randomized controlled trial aimed to determine the feasibility of studying the change process occurring in patients during the course of 2-year-long dynamic psychotherapy, psychoanalysis, and cognitive therapy, as compared with clinical management. In total, eight outpatients presenting with recurrent depression, two patients per treatment arm, were included. All patients were randomly assigned to one of the four treatment conditions. Defense mechanisms and coping patterns were assessed using validated observer-rated methodology based on transcribed, semistructured follow-along independent dynamic interviews. The results indicated that, whereas some patients in the active treatments changed on the symptomatic levels, some others remained unchanged during the course of their 2-year-long treatment. However, with regard to potential mechanisms of change in these patients, changes in defense mechanisms and coping patterns were revealed to be important processes over time in successful therapies and, to a lesser extent, in less successful treatments. No change was found either on outcome or on the process measure for the control condition, that is, clinical management. These results are discussed along with previous data comparing change in defense mechanisms and coping during the course of treatments.
Resumo:
Purpose: Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. Experimental Design: Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. Results: In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. Conclusions: In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy. Clin Cancer Res; 17(2); 255-66. (C)2010 AACR.
Resumo:
SUMMARY:: The EEG patterns seen with encephalopathies can be correlated to cerebral imaging findings including head computerized tomography and MRI. Background slowing without slow-wave intrusion is seen with acute and chronic cortical impairments that spare subcortical white matter. Subcortical/white matter structural abnormalities or hydrocephalus may produce projected slow-wave activity, while clinical entities involving both cortical and subcortical regions (diffuse cerebral abnormalities) engender both background slowing and slow-wave activity. Triphasic waves are seen with hepatic and renal insufficiency or medication toxicities (e.g., lithium, baclofen) in the absence of a significant cerebral imaging abnormality, Conversely, subcortical/white matter abnormalities may facilitate the appearance of triphasic waves without significant hepatic, renal, or toxic comorbidities. More specific syndromes, such as Jakob-Creutzfeldt disease, autoimmune limbic encephalitis, autoimmune corticosteroid-responsive encephalopathy with thyroid autoimmunity, sepsis-associated encephalopathy, and acute disseminated encephalomyelitis, have imaging/EEG changes that are variable but which may include slowing and epileptiform activity. This overview highlighting EEG-imaging correlations may help the treating physician in the diagnosis, and hence the appropriate treatment, of patients with encephalopathy.
Resumo:
OBJECTIVE. Data on human natality, stillbirth and perinatal mortality from Switzerland (1979-1987), available in four birthweight categories, are reexamined to assess any about-weekly (circaseptan) and changes in about-daily (circadian) patterns in central Europe over a century and a halfDESIGN. Retrospective analyses on archived data.SETTING. Federal Office of Statistics for Switzerland.RESULTS. In addition to prominent circadians, weekly patterns are also documented.CONCLUSION. Exogenous variations, prominent in early extrauterine life, such as changes of scheduling in obstetrics, may contribute to circadian and cireaseptan natality patterns. Information on these patterns serves in the optimization of neonatal care. Partly endogenous, partly physical environmental aspects, at least of about-weekly patterns, remain to be elucidated in series consisting exclusively of spontaneous parturitions.
Resumo:
Summary : The chemokines CCL19 and CCL21 and their common receptor CCR7 attract antigenpresenting dendritic cells (DCs) and naive T cells into the T zone of secondary lymphoid organs (SLO) and are therefore critically involved in homeostatic T cell recirculation and the initiation of adaptive immune responses. In addition. CCR7 ligands were proposed to mediate T cell exit from neonatal thymus, allowing colonization of T zones in SLOB. The relative contribution of CCL19 and CCL21 to these processes has remained unclear, as they were studied in mouse models lacking either CCR7 or both ligands. The aim of my thesis was to characterize Cc119-' mice and thereby investigate the relative roles of the two CCR7 ligands in development, homeostasis and immune response. The first study addressed the role of CCR7 ligands in DC biology. We found that CCL19 is dispensable for DC migration to lymph nodes and their localization to T zones. Furthermore, a CCL19-deficient environment did not lead to a defect in DC maturation or T cell priming. Therefore, CCL21 is sufficient to mediate CCR7-dependent processes during the initiation of adaptive immune responses. In the second study we investigated how the two CCR7 ligands affect CCR7 expression and function on naive T cells. We found that in SLOB CCR7 is constantly occupied with CCL19 and CCL21, eventually leading to its internalization. The reduced level of free CCR7 on these cells led to diminished ligand sensitivity and consequently impaired chemotactic responses. This effect was reversible by passage through aCCR7 ligand-free environment like the blood circulation. We propose that the different states of ligand sensitivity in SLOB and blood are important to allow for proper T cell recirculation. In the third study the role of CCL19 in neonatal thymus and spleen was analyzed. While neonatal Cc119-!- mice had no defect in thymic egress, we observed reduced T cell accumulation in the spleen but not lymph nodes. We identified reticular stromal cells in the developing white pulp (WP) as the major CCL 19 source. The development of these WP stromal cells as well as their CCL19 expression were dependent on LTalß2+ B cells. In conclusion, we have found that CCL21 can mostly compensate for lack of CCL19 in homeostasis and immunity. In contrast, during development. CCL19 has anon-redundant function for T cell colonization of the spleen.
Resumo:
Diversity patterns of ammonoids are analyzed and compared with the timing of anoxic deposits around the Cenomanian/Turonian (C/T) boundary in the Vocontian, Anglo-Paris, and Monster basins of Western Europe. Differing from most previous studies, which concentrate on a narrow time span bracketing the C/T boundary, the present analysis covers the latest Albian to Early Turonian interval for which a high resolution, ammonoid-based biochronology, including 34 Unitary Associations zones, is now available. During the latest Albian-Middle Cenomanian interval, species richness of ammonoids reveals a dynamical equilibrium oscillating around an average of 20 species, whereas the Late Cenomanian-Early Turonian interval displays an equilibrium centered on an average value of 6 species. The abrupt transition between these two successive equilibria lasted no longer than two Unitary Associations. The onset of the decline of species richness thus largely predates the spread of oxygen-poor water masses onto the shelves, while minimal values of species richness coincide with the Cenomanian-Turonian boundary only. The decline of species richness during the entire Late Cenomanian seems to result from lower origination percentages rather than from higher extinction percentages. This result is also supported by the absence of statistically significant changes in the extinction probabilities of the poly-cohorts. Separate analyses of species richness for acanthoceratids and heteromorphs, the two essential components of the Cenomanian ammonoid community, reveal that heteromorphs declined sooner than acanthoceratids. Moreover, acanthoceratids showed a later decline at the genus level than at the species level. Such a decoupling is accompanied by a significant increase in morphological disparity of acanthoceratids, which is expressed by the appearance of new genera. Last, during the Late Cenomanian, paedomorphic processes, juvenile innovations and reductions of adult size dominated the evolutionary radiation of acanthoceratids. Hence, the decrease in ammonoid species richness and their major evolutionary changes significantly predates the spread of anoxic deposits. Other environmental constraints such as global flooding of platforms, warmer and more equable climate, as well as productivity changes better correlate with the timing of diversity changes and evolutionary patterns of ammonoids and therefore, provide more likely causative mechanisms than anoxia alone.
Resumo:
Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.
Resumo:
Defensins are natural endogenous antimicrobial peptides with potent anti-HIV activity and immuno-modulatory effects. We recently demonstrated that immature dendritic cells (DC) produce α-defensins1-3 and that α-defensins1-3 modulate DC generation and maturation. Since DC-HIV interaction plays a critical role during the first steps of HIV infection, we investigated the possible impact of α-defensins1-3 production by DC on disease progression.
Resumo:
BACKGROUND: Over the last few decades, esophageal cancer incidence and mortality trends varied substantially across Europe, with important differences between sexes and the two main histological subtypes, squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). PATIENTS AND METHODS: To monitor recent esophageal cancer mortality trends and to compute short-term predictions in the European Union (EU) and selected European countries, we analyzed data provided by the World Health Organization (WHO) for 1980-2011. We also analyzed incidence trends and relative weights of ESCC and EAC across Europe using data from Cancer Incidence in Five Continents. RESULTS: Long-term decreasing trends were observed for male esophageal cancer mortality in several southern and western European countries, whereas in central Europe mortality increased until the mid-1990s and started to stabilize or decline over the last years. In some eastern and northern countries, the rates were still increasing. Mortality among European women remained comparatively low and showed stable or decreasing trends in most countries. Between 2000-2004 and 2005-2009, esophageal cancer mortality declined by 7% (from 5.34 to 4.99/100 000) in EU men, and by 3% (from 1.12 to 1.09/100 000) in EU women. Predictions to 2015 show persistent declines in mortality rates for men in the EU overall, and stable rates for EU women, with rates for 2015 of 4.5/100 000 men (about 22 300 deaths) and 1.1/100 000 women (about 7400 deaths). In northern Europe, EAC is now the predominant histological type among men, while for European women ESCC is more common and corresponding rates are still increasing in several countries. CONCLUSION(S): The observed trends reflect the variations in alcohol drinking, tobacco smoking and overweight across European countries.
Resumo:
PURPOSE: Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. EXPERIMENTAL DESIGN: Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. RESULTS: In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. CONCLUSIONS: In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy. Clin Cancer Res; 17(2); 255-66. ©2010 AACR.
Resumo:
BACKGROUND: An association between alcohol consumption and injury is clearly established from volume of drinking, heavy episodic drinking (HED), and consumption before injury. Little is known, however, about how their interaction raises risk of injury and what combination of factors carries the highest risk. This study explores which of 11 specified groups of drinkers (a) are at high risk and (b) contribute most to alcohol-attributable injuries. METHODS: In all, 8,736 patients, of whom 5,077 were injured, admitted to the surgical ward of the emergency department of Lausanne University Hospital between January 1, 2003, and June 30, 2004, were screened for alcohol use. Eleven groups were constructed on the basis of usual patterns of intake and preattendance drinking. Odds ratios (ORs) comparing injured and noninjured were derived, and alcohol-attributable fractions of injuries were calculated from ORs and prevalence of exposure groups. RESULTS: Risk of injury increased with volume of drinking, HED, and preattendance drinking. For both sexes, the highest risk was associated with low intake, HED, and 4 (women), 5 (men), or more drinks before injury. At the same level of preattendance drinking, high-volume drinkers were at lower risk than low-volume drinkers. In women, the group of low-risk non-HED drinkers taking fewer than 4 drinks suffered 47.5% of the alcohol-attributable injuries in contrast to only 20.4% for men. Low-volume male drinkers with HED had more alcohol-attributable injuries than that of low-volume female drinkers with HED (46.9% vs 23.2%). CONCLUSIONS: Although all groups of drinkers are at increased risk of alcohol-related injury, those who usually drink little but on occasion heavily are at particular risk. The lower risk of chronic heavy drinkers may be due to higher tolerance of alcohol. Prevention should thus target heavy-drinking occasions. Low-volume drinking women without HED and with only little preattendance drinking experienced a high proportion of injuries; such women would be well advised to drink very little or to take other special precautions in risky circumstances.
Resumo:
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.