798 resultados para Data-Intensive Science
Resumo:
Basic information theory is used to analyse the amount of confidential information which may be leaked by programs written in a very simple imperative language. In particular, a detailed analysis is given of the possible leakage due to equality tests and if statements. The analysis is presented as a set of syntax-directed inference rules and can readily be automated.
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
In e-Science experiments, it is vital to record the experimental process for later use such as in interpreting results, verifying that the correct process took place or tracing where data came from. The process that led to some data is called the provenance of that data, and a provenance architecture is the software architecture for a system that will provide the necessary functionality to record, store and use process documentation. However, there has been little principled analysis of what is actually required of a provenance architecture, so it is impossible to determine the functionality they would ideally support. In this paper, we present use cases for a provenance architecture from current experiments in biology, chemistry, physics and computer science, and analyse the use cases to determine the technical requirements of a generic, technology and application-independent architecture. We propose an architecture that meets these requirements and evaluate a preliminary implementation by attempting to realise two of the use cases.
Resumo:
Current scientific applications are often structured as workflows and rely on workflow systems to compile abstract experiment designs into enactable workflows that utilise the best available resources. The automation of this step and of the workflow enactment, hides the details of how results have been produced. Knowing how compilation and enactment occurred allows results to be reconnected with the experiment design. We investigate how provenance helps scientists to connect their results with the actual execution that took place, their original experiment and its inputs and parameters.
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.
Resumo:
HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.
Resumo:
Observational data encodes values of properties associated with a feature of interest, estimated by a specified procedure. For water the properties are physical parameters like level, volume, flow and pressure, and concentrations and counts of chemicals, substances and organisms. Water property vocabularies have been assembled at project, agency and jurisdictional level. Organizations such as EPA, USGS, CEH, GA and BoM maintain vocabularies for internal use, and may make them available externally as text files. BODC and MMI have harvested many water vocabularies alongside others of interest in their domain, formalized the content using SKOS, and published them through web interfaces. Scope is highly variable both within and between vocabularies. Individual items may conflate multiple concerns (e.g. property, instrument, statistical procedure, units). There is significant duplication between vocabularies. Semantic web technologies provide the opportunity both to publish vocabularies more effectively, and achieve harmonization to support greater interoperability between datasets. - Models for vocabulary items (property, substance/taxon, process, unit-of-measure, etc) may be formalized OWL ontologies, supporting semantic relations between items in related vocabularies; - By specializing the ontology elements from SKOS concepts and properties, diverse vocabularies may be published through a common interface; - Properties from standard vocabularies (e.g. OWL, SKOS, PROV-O and VAEM) support mappings between vocabularies having a similar scope - Existing items from various sources may be assembled into new virtual vocabularies However, there are a number of challenges: - use of standard properties such as sameAs/exactMatch/equivalentClass require reasoning support; - items have been conceptualised as both classes and individuals, complicating the mapping mechanics; - re-use of items across vocabularies may conflict with expectations concerning URI patterns; - versioning complicates cross-references and re-use. This presentation will discuss ways to harness semantic web technologies to publish harmonized vocabularies, and will summarise how many of the challenges may be addressed.
Resumo:
This article presents the data-rich findings of an experiment with enlisting patron-driven/demand-driven acquisitions (DDA) of ebooks in two ways. The first experiment entailed comparison of DDA eBook usage against newly ordered hardcopy materials’ circulation, both overall and ebook vs. print usage within the same subject areas. Secondly, this study experimented with DDA ebooks as a backup plan for unfunded requests left over at the end of the fiscal year.
Resumo:
This article presents the data-rich findings of an experiment with enlisting patron-driven/demand-driven acquisitions (DDA) of ebooks in two ways. The first experiment entailed comparison of DDA eBook usage against newly ordered hardcopy materials’ circulation, both overall and ebook vs. print usage within the same subject areas. Secondly, this study experimented with DDA ebooks as a backup plan for unfunded requests left over at the end of the fiscal year.
Resumo:
This article describes analyzing Interlibrary Loan data to help inform collection management decision and offers guidance for formulating policies for discerning borrowed titles indicative of gaps in the library from special-interest pursuits beyond the scope of the university curriculum.
Resumo:
http://digitalcommons.winthrop.edu/dacusdocsnews/1049/thumbnail.jpg
Resumo:
This thesis addresses the problem of the academic identity of the area traditionally referred to as physical education. The study is a critical examination of the argu ments for the justi cation of this area as an autonomous branch of knowledge. The investigation concentrates on a selected number of arguments. The data collection comprised articles books and proceedings of conferences. The preliminary assessment of these materials resulted in a classi cation of the arguments into three groups. The rst group comprises the arguments in favour of physical education as an academic discipline. The second includes the arguments supporting a science of sport. The third consists of the arguments in favour of to a eld of human movement study. The examination of these arguments produced the following results. (a) The area of physical education does not satisfy the conditions presupposed by the de nition of academic discipline. This is so because the area does not form an integrated system of scienti c theories. (b) The same di culty emerges from the examination of the ar guments for sport science. There is no science of sport because there is no integrated system of scienti c theories related to sport. (c) The arguments in favour of a eld of study yielded more productive results. However di culties arise from the de nition of human movement. The analysis of this concept showed that its limits are not well demarcated. This makes it problematic to take human movement as the focus of a eld of studies. These aspects led to the conclusion that such things as an academic discipline of physical education sport science and eld of human movement studies do not exist. At least there are not such things in the sense of autonomous branches of knowledge. This does not imply that a more integrated inquiry based on several disciplines is not possible and desirable. This would enable someone entering phys ical education to nd a more organised structure of knowledge with some generally accepted problem situations procedures and theories on which to base professional practice.
Resumo:
Care has always been present in the history of humanity and in contemporary nursing it is considered to be a fundamental characteristic. In the Intensive Care Unit (ICU), care occurs within an environment that is known for its stressful factors, technological equipment, social isolation and discomfort. Whilst the reality of nursing practice in ICU demonstrates the lack of planned and systematized care, there is an indication that the professionals working in this setting utilize some type of knowledge. Based on that premise, in this study we aim to identify the knowledge that the nurses use in providing care in the ICU. We believe that the identification and characterization of this knowledge, and how it presents itself in practice, requires a reflective analysis process. Therefore, we utilized a qualitative perspective and Kim´s (1999) investigative methodology of reflective inquiry that is based on the precepts of Action Science proposed by Argyris et al. (1985). The study was conducted with 8 intensive care nurses of a public hospital. Data were collected by means of non-participative observation of the nursing care actions and a semi-structured interview conducted within the reflective mode that focused on the nurses practice in the ICU. The results enabled us no only to detect that the nurses utilized knowledge and patterns of knowledge acquired or constructed, but to identify them as: scientific, philosophic, religious, empirical, personal, ethical, and esthetic knowledge. The predominance of the scientific knowledge in the care process suggests that these nurses hold an acquired scientific substance that they utilize to provide specialized care directed toward critical treatment. The conception of this reality surpasses the theoretical limits, the techniques, and the known facts, and denotes the need for a reflective process in action to aide in the comprehension of the knowledge involved in the construction of excellent care