989 resultados para DSGE, Monte Carlo, Misspecification
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
As part of a project to use the long-lived (T(1/2)=1200a) (166m)Ho as reference source in its reference ionisation chamber, IRA standardised a commercially acquired solution of this nuclide using the 4pibeta-gamma coincidence and 4pigamma (NaI) methods. The (166m)Ho solution supplied by Isotope Product Laboratories was measured to have about 5% Europium impurities (3% (154)Eu, 0.94% (152)Eu and 0.9% (155)Eu). Holmium had therefore to be separated from europium, and this was carried out by means of ion-exchange chromatography. The holmium fractions were collected without europium contamination: 162h long HPGe gamma measurements indicated no europium impurity (detection limits of 0.01% for (152)Eu and (154)Eu, and 0.03% for (155)Eu). The primary measurement of the purified (166m)Ho solution with the 4pi (PC) beta-gamma coincidence technique was carried out at three gamma energy settings: a window around the 184.4keV peak and gamma thresholds at 121.8 and 637.3keV. The results show very good self-consistency, and the activity concentration of the solution was evaluated to be 45.640+/-0.098kBq/g (0.21% with k=1). The activity concentration of this solution was also measured by integral counting with a well-type 5''x5'' NaI(Tl) detector and efficiencies computed by Monte Carlo simulations using the GEANT code. These measurements were mutually consistent, while the resulting weighted average of the 4pi NaI(Tl) method was found to agree within 0.15% with the result of the 4pibeta-gamma coincidence technique. An ampoule of this solution and the measured value of the concentration were submitted to the BIPM as a contribution to the Système International de Référence.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
AbstractBreast cancer is one of the most common cancers affecting one in eight women during their lives. Survival rates have increased steadily thanks to early diagnosis with mammography screening and more efficient treatment strategies. Post-operative radiation therapy is a standard of care in the management of breast cancer and has been shown to reduce efficiently both local recurrence rate and breast cancer mortality. Radiation therapy is however associated with some late effects for long-term survivors. Radiation-induced secondary cancer is a relatively rare but severe late effect of radiation therapy. Currently, radiotherapy plans are essentially optimized to maximize tumor control and minimize late deterministic effects (tissue reactions) that are mainly associated with high doses (» 1 Gy). With improved cure rates and new radiation therapy technologies, it is also important to evaluate and minimize secondary cancer risks for different treatment techniques. This is a particularly challenging task due to the large uncertainties in the dose-response relationship.In contrast with late deterministic effects, secondary cancers may be associated with much lower doses and therefore out-of-field doses (also called peripheral doses) that are typically inferior to 1 Gy need to be determined accurately. Out-of-field doses result from patient scatter and head scatter from the treatment unit. These doses are particularly challenging to compute and we characterized it by Monte Carlo (MC) calculation. A detailed MC model of the Siemens Primus linear accelerator has been thoroughly validated with measurements. We investigated the accuracy of such a model for retrospective dosimetry in epidemiological studies on secondary cancers. Considering that patients in such large studies could be treated on a variety of machines, we assessed the uncertainty in reconstructed peripheral dose due to the variability of peripheral dose among various linac geometries. For large open fields (> 10x10 cm2), the uncertainty would be less than 50%, but for small fields and wedged fields the uncertainty in reconstructed dose could rise up to a factor of 10. It was concluded that such a model could be used for conventional treatments using large open fields only.The MC model of the Siemens Primus linac was then used to compare out-of-field doses for different treatment techniques in a female whole-body CT-based phantom. Current techniques such as conformai wedged-based radiotherapy and hybrid IMRT were investigated and compared to older two-dimensional radiotherapy techniques. MC doses were also compared to those of a commercial Treatment Planning System (TPS). While the TPS is routinely used to determine the dose to the contralateral breast and the ipsilateral lung which are mostly out of the treatment fields, we have shown that these doses may be highly inaccurate depending on the treatment technique investigated. MC shows that hybrid IMRT is dosimetrically similar to three-dimensional wedge-based radiotherapy within the field, but offers substantially reduced doses to out-of-field healthy organs.Finally, many different approaches to risk estimations extracted from the literature were applied to the calculated MC dose distribution. Absolute risks varied substantially as did the ratio of risk between two treatment techniques, reflecting the large uncertainties involved with current risk models. Despite all these uncertainties, the hybrid IMRT investigated resulted in systematically lower cancer risks than any of the other treatment techniques. More epidemiological studies with accurate dosimetry are required in the future to construct robust risk models. In the meantime, any treatment strategy that reduces out-of-field doses to healthy organs should be investigated. Electron radiotherapy might offer interesting possibilities with this regard.RésuméLe cancer du sein affecte une femme sur huit au cours de sa vie. Grâce au dépistage précoce et à des thérapies de plus en plus efficaces, le taux de guérison a augmenté au cours du temps. La radiothérapie postopératoire joue un rôle important dans le traitement du cancer du sein en réduisant le taux de récidive et la mortalité. Malheureusement, la radiothérapie peut aussi induire des toxicités tardives chez les patients guéris. En particulier, les cancers secondaires radio-induits sont une complication rare mais sévère de la radiothérapie. En routine clinique, les plans de radiothérapie sont essentiellement optimisées pour un contrôle local le plus élevé possible tout en minimisant les réactions tissulaires tardives qui sont essentiellement associées avec des hautes doses (» 1 Gy). Toutefois, avec l'introduction de différentes nouvelles techniques et avec l'augmentation des taux de survie, il devient impératif d'évaluer et de minimiser les risques de cancer secondaire pour différentes techniques de traitement. Une telle évaluation du risque est une tâche ardue étant donné les nombreuses incertitudes liées à la relation dose-risque.Contrairement aux effets tissulaires, les cancers secondaires peuvent aussi être induits par des basses doses dans des organes qui se trouvent hors des champs d'irradiation. Ces organes reçoivent des doses périphériques typiquement inférieures à 1 Gy qui résultent du diffusé du patient et du diffusé de l'accélérateur. Ces doses sont difficiles à calculer précisément, mais les algorithmes Monte Carlo (MC) permettent de les estimer avec une bonne précision. Un modèle MC détaillé de l'accélérateur Primus de Siemens a été élaboré et validé avec des mesures. La précision de ce modèle a également été déterminée pour la reconstruction de dose en épidémiologie. Si on considère que les patients inclus dans de larges cohortes sont traités sur une variété de machines, l'incertitude dans la reconstruction de dose périphérique a été étudiée en fonction de la variabilité de la dose périphérique pour différents types d'accélérateurs. Pour de grands champs (> 10x10 cm ), l'incertitude est inférieure à 50%, mais pour de petits champs et des champs filtrés, l'incertitude de la dose peut monter jusqu'à un facteur 10. En conclusion, un tel modèle ne peut être utilisé que pour les traitements conventionnels utilisant des grands champs.Le modèle MC de l'accélérateur Primus a été utilisé ensuite pour déterminer la dose périphérique pour différentes techniques dans un fantôme corps entier basé sur des coupes CT d'une patiente. Les techniques actuelles utilisant des champs filtrés ou encore l'IMRT hybride ont été étudiées et comparées par rapport aux techniques plus anciennes. Les doses calculées par MC ont été comparées à celles obtenues d'un logiciel de planification commercial (TPS). Alors que le TPS est utilisé en routine pour déterminer la dose au sein contralatéral et au poumon ipsilatéral qui sont principalement hors des faisceaux, nous avons montré que ces doses peuvent être plus ou moins précises selon la technTque étudiée. Les calculs MC montrent que la technique IMRT est dosimétriquement équivalente à celle basée sur des champs filtrés à l'intérieur des champs de traitement, mais offre une réduction importante de la dose aux organes périphériques.Finalement différents modèles de risque ont été étudiés sur la base des distributions de dose calculées par MC. Les risques absolus et le rapport des risques entre deux techniques de traitement varient grandement, ce qui reflète les grandes incertitudes liées aux différents modèles de risque. Malgré ces incertitudes, on a pu montrer que la technique IMRT offrait une réduction du risque systématique par rapport aux autres techniques. En attendant des données épidémiologiques supplémentaires sur la relation dose-risque, toute technique offrant une réduction des doses périphériques aux organes sains mérite d'être étudiée. La radiothérapie avec des électrons offre à ce titre des possibilités intéressantes.
Resumo:
Since 1895, when X-rays were discovered, ionizing radiation became part of our life. Its use in medicine has brought significant health benefits to the population globally. The benefit of any diagnostic procedure is to reduce the uncertainty about the patient's health. However, there are potential detrimental effects of radiation exposure. Therefore, radiation protection authorities have become strict regarding the control of radiation risks.¦There are various situations where the radiation risk needs to be evaluated. International authority bodies point to the increasing number of radiologic procedures and recommend population surveys. These surveys provide valuable data to public health authorities which helps them to prioritize and focus on patient groups in the population that are most highly exposed. On the other hand, physicians need to be aware of radiation risks from diagnostic procedures in order to justify and optimize the procedure and inform the patient.¦The aim of this work was to examine the different aspects of radiation protection and investigate a new method to estimate patient radiation risks.¦The first part of this work concerned radiation risk assessment from the regulatory authority point of view. To do so, a population dose survey was performed to evaluate the annual population exposure. This survey determined the contribution of different imaging modalities to the total collective dose as well as the annual effective dose per caput. It was revealed that although interventional procedures are not so frequent, they significantly contribute to the collective dose. Among the main results of this work, it was shown that interventional cardiological procedures are dose-intensive and therefore more attention should be paid to optimize the exposure.¦The second part of the project was related to the patient and physician oriented risk assessment. In this part, interventional cardiology procedures were studied by means of Monte Carlo simulations. The organ radiation doses as well as effective doses were estimated. Cancer incidence risks for different organs were calculated for different sex and age-at-exposure using the lifetime attributable risks provided by the Biological Effects of Ionizing Radiations Report VII. Advantages and disadvantages of the latter results were examined as an alternative method to estimate radiation risks. The results show that this method is the most accurate, currently available, to estimate radiation risks. The conclusions of this work may guide future studies in the field of radiation protection in medicine.¦-¦Depuis la découverte des rayons X en 1895, ce type de rayonnement a joué un rôle important dans de nombreux domaines. Son utilisation en médecine a bénéficié à la population mondiale puisque l'avantage d'un examen diagnostique est de réduire les incertitudes sur l'état de santé du patient. Cependant, leur utilisation peut conduire à l'apparition de cancers radio-induits. Par conséquent, les autorités sanitaires sont strictes quant au contrôle du risque radiologique.¦Le risque lié aux radiations doit être estimé dans différentes situations pratiques, dont l'utilisation médicale des rayons X. Les autorités internationales de radioprotection indiquent que le nombre d'examens et de procédures radiologiques augmente et elles recommandent des enquêtes visant à déterminer les doses de radiation délivrées à la population. Ces enquêtes assurent que les groupes de patients les plus à risque soient prioritaires. D'un autre côté, les médecins ont également besoin de connaître le risque lié aux radiations afin de justifier et optimiser les procédures et informer les patients.¦Le présent travail a pour objectif d'examiner les différents aspects de la radioprotection et de proposer une manière efficace pour estimer le risque radiologique au patient.¦Premièrement, le risque a été évalué du point de vue des autorités sanitaires. Une enquête nationale a été réalisée pour déterminer la contribution des différentes modalités radiologiques et des divers types d'examens à la dose efficace collective due à l'application médicale des rayons X. Bien que les procédures interventionnelles soient rares, elles contribuent de façon significative à la dose délivrée à la population. Parmi les principaux résultats de ce travail, il a été montré que les procédures de cardiologie interventionnelle délivrent des doses élevées et devraient donc être optimisées en priorité.¦La seconde approche concerne l'évaluation du risque du point de vue du patient et du médecin. Dans cette partie, des procédures interventionnelles cardiaques ont été étudiées au moyen de simulations Monte Carlo. La dose délivrée aux organes ainsi que la dose efficace ont été estimées. Les risques de développer des cancers dans plusieurs organes ont été calculés en fonction du sexe et de l'âge en utilisant la méthode établie dans Biological Effects of Ionizing Radiations Report VII. Les avantages et inconvénients de cette nouvelle technique ont été examinés et comparés à ceux de la dose efficace. Les résultats ont montré que cette méthode est la plus précise actuellement disponible pour estimer le risque lié aux radiations. Les conclusions de ce travail pourront guider de futures études dans le domaine de la radioprotection en médicine.
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.
Resumo:
This paper analyses the impact of using different correlation assumptions between lines of business when estimating the risk-based capital reserve, the Solvency Capital Requirement (SCR), under Solvency II regulations. A case study is presented and the SCR is calculated according to the Standard Model approach. Alternatively, the requirement is then calculated using an Internal Model based on a Monte Carlo simulation of the net underwriting result at a one-year horizon, with copulas being used to model the dependence between lines of business. To address the impact of these model assumptions on the SCR we conduct a sensitivity analysis. We examine changes in the correlation matrix between lines of business and address the choice of copulas. Drawing on aggregate historical data from the Spanish non-life insurance market between 2000 and 2009, we conclude that modifications of the correlation and dependence assumptions have a significant impact on SCR estimation.
Credit risk contributions under the Vasicek one-factor model: a fast wavelet expansion approximation
Resumo:
To measure the contribution of individual transactions inside the total risk of a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the risks. However, the usual Monte Carlo (MC) approach is known to be a very time consuming method for computing these risk contributions. In this paper we consider the Wavelet Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities representing the marginal impact on the total portfolio risk. Moreover, we present technical improvements in the Wavelet Approximation (WA) that considerably reduce the computational effort in the approximation while, at the same time, the accuracy increases.
Resumo:
This paper examines why a financial entity’s solvency capital estimation might be underestimated if the total amount required is obtained directly from a risk measurement. Using Monte Carlo simulation we show that, in some instances, a common risk measure such as Value-at-Risk is not subadditive when certain dependence structures are considered. Higher risk evaluations are obtained for independence between random variables than those obtained in the case of comonotonicity. The paper stresses, therefore, the relationship between dependence structures and capital estimation.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Resumo:
We explore in depth the validity of a recently proposed scaling law for earthquake inter-event time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.