935 resultados para Copper (1)
Resumo:
This study aimed to evaluate the sensitiveness of the information obtained for the residual lignin from Eucalyptus grandis kraft pulps analyzed through the nitrobenzene oxidation, copper oxide (CuO) reduction and acidolysis techniques. The chips were cooked, resulting pulps of kappa number 14,5 and 16,9, respectively. Both lignins' pulps were evaluated through three methods (nitrobenzene oxidation, copper oxide oxidation and acidolysis). Then, they were subjected to an oxygen delignification stage. The 16,9 kappa number pulp resulted in higher levels of non-condensed lignin structures by the acidolysis method, higher syringyl/vanillin ratios (S/V) by the nitrobenzene and copper oxide methods and better performance in the oxygen delignification stage. The different methods allowed to differ the residual lignin pulps with kappa number 14,5 and 16,9, and the nitrobenzene oxidation method showed the highest sensitiveness in this study results.
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma–mass spectrometry (ICPMS). Prior to analysis, 200 ml of blood samples was mixed with 500 ml of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 mg//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Santé Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 mg/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid state chelates of general formula H-2[M(EDTA)] . nH2O, where M is Co, Ni, Cu or Zn, and EDTA is ethylenediaminetetraacetate, were prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA) and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.
Resumo:
The thermal decomposition of pyrrolidinedithiocarbamate and piperidinedithiocarbamate complexes of CoII, NiII, CuII and HgII have been studied by thermogravimetry and differential scanning calorimetry. The decomposition intermediates and final products were identified by their X-ray diffraction patterns. The i.r. spectra are discussed in terms of the thermal decomposition pathways.
Resumo:
A structural study of CuO supported on a CeO2-TiO2 system was undertaken using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. The results of XRD revealed the presence of only two phases, TiO2 anatase and CeO2 cerianite. A trend towards smaller TiO2 crystallites was observed when cerium content increased. When the amount of cerium increased, Ti K-edge XANES analysis showed an increasing distortion of Ti sites. The results of Ce LIII-edge EXAFS showed that Ce atoms are coordinated by eight oxygen atoms at 2.32 Å. For the sample containing a small amount of cerium, the EXAFS analysis indicated that the local structure around Ce atoms was highly distorted. The catalysts presented quite different Cu K-edge XANES spectra compared to the spectra of the CuO and Cu2O reference compounds. The Cu-O mean bond length was close to that of the CuO and the Cu atoms in the catalysts are surrounded by approximately four oxygen atoms in their first shell. Copper supported on the ceria-modified titania support catalysts displayed a better performance in the methanol dehydrogenation when compared to copper supported only on titania or on ceria. © 2002 Plenum Publishing Corporation.
Resumo:
The electrochemical behaviour of copper in 6.0 mol 1-1 sulfuric acid at 30°C, was studied by means of the potentiodynamic method. At low potential sweep rates, v < 200 m V s-1, the data reveal that the anodic process is basically constituted of copper dissolution and a film formation which inhibits further metal oxidation and which may undergo further dissolution. For higher potential sweep rates, a modification in the passivation region of the voltammogram is observed. It can be ascribed to a change in the passivation mechanism which possibly involves different surface species. The kineticrelationships derived from the potentiodynamic I/E curves obtained at low v suggest a film formation via a dissolution/precipitation mechanism. © 1993.
Resumo:
Silica gel having a particle size between 0.2 and 0.05 mm and a specific surface area, S BET = 473 m 2 g -1, was chemically modified with benzimidazole. Adsorption isotherms of CuX 2 (X = Cl, Br or ClO 4) from ethanol and acetone solutions were studied at 298 K. The metal is bonded to the surface through the free nitrogen atom of the attached benzimidazole. The average number of ligands co-ordinated to the central metal ion was shown to depend on the solid surface loading by the solute. At low loading the electronic and ESR spectral parameters indicated that the copper ion is in a distorted-tetragonal symmetry field.
Resumo:
Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.