998 resultados para Conductivity, specific
Resumo:
Background: To enhance the induction of insert specific immune responses, a new generation of replication competent poxvirus vectors was designed and evaluated against non-replicating poxvirus vectors in a HIV vaccine study in non human primates.Methods: Rhesus macaques were immunized with either the non-replicating variant NYVAC-GagPolNef HIV-1 clade C or the replicating NYVAC-GagPolNef-C-KC, boosted with HIVGag- PolEnv-SLP and immune responses were monitored.Results: Gag-specific T-cell responses were only detected in animals immunized with the replicating NYVAC-GagPolNef-C-KC variant. Further enhancement and broadening of the immune response was studied by boosting the animals with novel T-cell immunogens HIVconsv synthetic long peptides (SLP), which direct vaccine-induced responses to the most conserved regions of HIV and contain both CD4 T-helper and CD8 CTL epitopes. The adjuvanted (Montanide ISA-720) SLP divided into subpools and delivered into anatomically separate sites enhanced the Gag-specific T-cell responses in 4 out of 6 animals, to more than 1000 SFC/106 PBMC in some animals. Furthermore, the SLP immunization broadened the immune response in 4 out of 6 animals to multiple Pol epitopes. Even Env-specific responses, to which the animals had not been primed, were induced by SLP in 2 out of 6 animals.Conclusion: This new immunization strategy of priming with replicating competent poxvirus NYVAC-HIVGagPolNef and boosting with HIVGagPolEnv-SLP, induced strong and broad Tcell responses and provides a promising new HIV vaccine approach. This study was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
Testosterone (100 nM to 40 microM) antagonized the effect of aldosterone (10 nM) on Na+ transport in the toad bladder measured in vitro as short-circuit current (SCC). Half-maximal inhibition occurred at an antagonist-agonist molar ratio of 150:1. The antagonist action of testosterone was reversed by addition of more aldosterone. The antagonism was specific in the sense that testosterone (20 microM) did not inhibit the response of the SCC to oxytocin (50 mU/ml). By itself, testosterone (up to 20 microM) had no agonist activity on base-line SCC. Finally, testosterone (500 nM to 20 microM) specifically displaced [3H]aldosterone (5 nm) from its cytoplasmic and nuclear binding sites in bladders incubated in vitro at 25 or 0 degrees C and labeled at steady state. There was a significant linear correlation between the effect of testosterone on the aldosterone-dependent SCC and its effect on [3H]aldosterone binding sites in the cytoplasm and in the nucleus. We conclude that 1) testosterone is a specific competitive antagonist of aldosterone, and 2) [3H]aldosterone nuclear and cytoplasmic binding sites could be mineralocorticoid receptors, mediating the action of aldosterone on Na+ transport.
Resumo:
Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.
Resumo:
Avidity of Ag recognition by tumor-specific T cells is one of the main parameters that determines the potency of a tumor rejection Ag. In this study we show that the relative efficiency of staining of tumor Ag-specific T lymphocytes with the corresponding fluorescent MHC class I/peptide multimeric complexes can considerably vary with staining conditions and does not necessarily correlate with avidity of Ag recognition. Instead, we found a clear correlation between avidity of Ag recognition and the stability of MHC class I/peptide multimeric complexes interaction with TCR as measured in dissociation kinetic experiments. These findings are relevant for both identification and isolation of tumor-reactive CTL.
Resumo:
Nyssomyia intermedia (Lutz & Neiva) and Nyssomyia neivai (Pinto) are morphologically very close and both present great variation in some structures. The objective of this study is a description of the variation among the females of these species in populations from the States of Minas Gerais and São Paulo. The morphological structures studied were the number of horizontal teeth in the cibarium and the number of rings and the shape of the terminal knob of the spermathecae. The spermatheca rings are significantly more numerous in N. intermedia than in N. neivai and the simple shape of the terminal knob predominated in both species. Regarding the cibarium, eight to eleven teeth have been found in both species, with up to twelve teeth in the latter. The number of horizontal teeth and the shape of the terminal knob of the spermathecae were variable throughout the populations of both species and all structures were polymorphic in the populations studied.
Resumo:
Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication.
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.
Resumo:
According to the Taylor principle a central bank should adjust the nominal interest rate by more than one-for-one in response to changes in current inflation. Most of the existing literature supports the view that by following this simple recommendation a central bank can avoid being a source of unnecessary fluctuations in economic activity. The present paper shows that this conclusion is not robust with respect to the modelling of capital accumulation. We use our insights to discuss the desirability of alternative interest raterules. Our results suggest a reinterpretation of monetary policy under Volcker and Greenspan: The empirically plausible characterization of monetary policy can explain the stabilization of macroeconomic outcomes observed in the early eighties for the US economy. The Taylor principle in itself cannot.
Resumo:
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
Individual-specific uncertainty may increase the chances of reform beingenacted and sustained. Reform may be more likely to be enacted because amajority of agents might end up losing little from reform and a minoritygaining a lot. Under certainty, reform would therefore be rejected, butit may be enacted with uncertainty because those who end up losing believethat they might be among the winners. Reform may be more likely to besustained because, in a realistic setting, reform will increase theincentives of agents to move into those economic activities that benefit.Agents who respond to these incentives will vote to sustain reform infuture elections, even if they would have rejected reform under certainty.These points are made using the trade-model of Fernandez and Rodrik (AER,1991).
Resumo:
The expression of the serum- and glucocorticoid-regulated kinase 1 (Sgk1) is induced by mineralocorticoids and, in turn, upregulates the renal epithelial Na(+) channel (ENaC). Total inactivation of Sgk1 has been associated with transient urinary Na(+) wasting with a low-Na(+) diet, while the aldosterone-mediated ENaC channel activation was unchanged in the collecting duct. Since Sgk1 is ubiquitously expressed, we aimed to study the role of renal Sgk1 and generated an inducible kidney-specific knockout (KO) mouse. We took advantage of the previously described TetOn/CreLoxP system, in which rtTA is under the control of the Pax8 promotor, allowing inducible inactivation of the floxed Sgk1 allele in the renal tubules (Sgk1fl/fl/Pax8/LC1 mice). We found that under a standard Na(+) diet, renal water and Na(+)/K(+) excretion had a tendency to be higher in doxycycline-treated Sgk1 KO mice compared with control mice. The impaired ability of Sgk1 KO mice to retain Na(+) increased significantly with a low-salt diet despite higher plasma aldosterone levels. On a low-Na(+) diet, the Sgk1 KO mice were also hyperkaliuric and lost body weight. This phenotype was accompanied by a decrease in systolic and diastolic blood pressure. At the protein level, we observed a reduction in phosphorylation of the ubiquitin protein-ligase Nedd4-2 and a decrease in the expression of the Na(+)-Cl(-)-cotransporter (NCC) and to a lesser extent of ENaC.
Resumo:
Abstract: Purpose: NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO119-143 region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO119-143 tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). Experimental Design: We generated tetramers of DRB1*0101 incorporating peptide ESO119-143 using a previously described strategy. We assessed ESO119-143-specific CD4 T cells in peptide-stimulated post-vaccine cultures using the tetramers. We isolated DR1/ESO119-143 tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO119-143 tetramer(+) T cells ex vivo and characterized them phenotypically. Results: Staining of cultures from vaccinated patients with DR1/ESO119-143 tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO123-137 as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO119-143 tetramer(+) cells using T cell receptor (TCR) beta chain variable region (V beta)-specific antibodies, we identified several frequently used V beta. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. Conclusions: The development of DR1/ESO119-143 tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients