946 resultados para Co-stimulatory molecules and antigen presentation
Resumo:
Down-regulation of the initial burst of viremia during primary human immunodeficiency virus (HIV) infection is thought to be mediated predominantly by HIV-specific CD8+ cytotoxic T lymphocytes (CTL). This response is associated with major perturbations in the T cell receptor (TCR) repertoire. To investigate the failure of the cellular immune response to adequately control viral spread and replication and to prevent establishment of HIV infection, changes in the TCR repertoire and in the distribution of virus-specific CTL between blood and lymph node were analyzed in three patients with primary infection. By the combined use of clonotype-specific polymerase chain reaction and analysis of the frequency of in vivo activated HIV-specific CTL, it was shown that HIV-specific CTL clones preferentially accumulated in blood as opposed to lymph node. Accumulation of HIV-specific CTL in blood occurred prior to effective down-regulation of virus replication in both blood and lymph node. These findings should provide new insights into how HIV, and possibly other viruses, elude the immune response of the host during primary infection.
Resumo:
OBJECTIVES: To evaluate the prevalence and clinical presentation of myocardial infarction (MI) and myocarditis in young adults presenting with chest pain (CP) and an elevated serum troponin I (TnI) to the emergency department (ED). DESIGN: Retrospective, observational, single-centre study. PARTICIPANTS: All consecutive patients 18-40 years old admitted to the ED for CP with an elevated TnI concentration. PRIMARY OUTCOME MEASURES: Prevalence of MI, myocarditis and the characterisation of clinical presentation. RESULTS: 1588 patients between 18 and 40 years old were admitted to the ED with CP during 30 consecutive months. 49 (3.1%) patients with an elevated TnI (>0.09 μg/l) were included. 32.7% (16/49) were diagnosed with MI (11 ST-elevation myocardial infarction (STEMI) and 5 non-ST-elevation myocardial infarction (NSTEMI)) and 59.2% (29/49) with myocarditis. Compared with patients with myocarditis, MI patients were older (34.1±3.8 vs 26.9±6.4, p=0.0002) with more cardiovascular risk factors (mean 2.06 vs 0.69). Diabetes (18.8% vs 0%, p=0.0039), dyslipidaemia (56.2% vs 3.4%, p<0.0001) and family history of coronary artery disease (CAD) (37.5% vs 10.3% p=0.050) were associated with MI. Fever or recent viral illness were present in 75.9% (22/29) of patients with myocarditis, and in 0% of MI patients (p<0.0001). During follow-up, two patients with myocarditis were re-admitted for CP. CONCLUSIONS: In this study, 32.7% of patients <40-year-old admitted to an ED with CP and elevated TnI had a diagnosis of MI. Key distinctive clinical factors include diabetes, dyslipidaemia, family history of CAD and fever or recent viral illness.
Resumo:
Background/Purpose: The primary treatment goals for gouty arthritis (GA) are rapid relief of pain and inflammation during acute attacks, and long-term hyperuricemia management. A post-hoc analysis of 2 pivotal trials was performed to assess efficacy and safety of canakinumab (CAN), a fully human monoclonal anti-IL-1_ antibody, vs triamcinolone acetonide (TA) in GA patients unable to use NSAIDs and colchicine, and who were on stable urate lowering therapy (ULT) or unable to use ULT. Methods: In these 12-week, randomized, multicenter, double-blind, double-dummy, active-controlled studies (_-RELIEVED and _-RELIEVED II), patients had to have frequent attacks (_3 attacks in previous year) meeting preliminary GA ACR 1977 criteria, and were unresponsive, intolerant, or contraindicated to NSAIDs and/or colchicine, and if on ULT, ULT was stable. Patients were randomized during an acute attack to single dose CAN 150 mg s.c. or TA 40 mg i.m. and were redosed "on demand" for each new attack. Patients completing the core studies were enrolled into blinded 12-week extension studies to further investigate on-demand use of CAN vs TA for new attacks. The subpopulation selected for this post-hoc analysis was (a) unable to use NSAIDs and colchicine due to contraindication, intolerance or lack of efficacy for these drugs, and (b) currently on ULT, or contraindication or previous failure of ULT, as determined by investigators. Subpopulation comprised 101 patients (51 CAN; 50 TA) out of 454 total. Results: Several co-morbidities, including hypertension (56%), obesity (56%), diabetes (18%), and ischemic heart disease (13%) were reported in 90% of this subpopulation. Pain intensity (VAS 100 mm scale) was comparable between CAN and TA treatment groups at baseline (least-square [LS] mean 74.6 and 74.4 mm, respectively). A significantly lower pain score was reported with CAN vs TA at 72 hours post dose (1st co-primary endpoint on baseline flare; LS mean, 23.5 vs 33.6 mm; difference _10.2 mm; 95% CI, _19.9, _0.4; P_0.0208 [1-sided]). CAN significantly reduced risk for their first new attacks by 61% vs TA (HR 0.39; 95% CI, 0.17-0.91, P_0.0151 [1-sided]) for the first 12 weeks (2nd co-primary endpoint), and by 61% vs TA (HR 0.39; 95% CI, 0.19-0.79, P_0.0047 [1-sided]) over 24 weeks. Serum urate levels increased for CAN vs TA with mean change from baseline reaching a maximum of _0.7 _ 2.0 vs _0.1 _ 1.8 mg/dL at 8 weeks, and _0.3 _ 2.0 vs _0.2 _ 1.4 mg/dL at end of study (all had GA attack at baseline). Adverse Events (AEs) were reported in 33 (66%) CAN and 24 (47.1%) TA patients. Infections and infestations were the most common AEs, reported in 10 (20%) and 5 (10%) patients treated with CAN and TA respectively. Incidence of SAEs was comparable between CAN (gastritis, gastroenteritis, chronic renal failure) and TA (aortic valve incompetence, cardiomyopathy, aortic stenosis, diarrohea, nausea, vomiting, bicuspid aortic valve) groups (2 [4.0%] vs 2 [3.9%]). Conclusion: CAN provided superior pain relief and reduced risk of new attack in highly-comorbid GA patients unable to use NSAIDs and colchicine, and who were currently on stable ULT or unable to use ULT. The safety profile in this post-hoc subpopulation was consistent with the overall _-RELIEVED and _-RELIEVED II population.
Resumo:
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.
Resumo:
The origin and specificity of alphabeta TCR(+) T cells that express CD8alphaalpha have been controversial issues. Here we provide direct evidence that precursors of functional CD8alphaalpha T cells are positively selected in the thymus in the presence of agonist self-peptides. Like conventional positive selection, this agonist selection process requires functional TCR alpha-CPM, whereas it is independent of CD8beta expression. Furthermore, CD8alphaalpha expression on mature, agonist-selected T cells does not imply selection by MHC class I, and CD8alphaalpha(+) T cells can be either class I or class II restricted. Our data define a distinct agonist-dependent, positive selection process in the thymus, and they suggest a function for CD8alphaalpha distinct from the conventional TCR coreceptor function of CD8alphabeta or CD4.
Resumo:
A comprehensive understanding of the complex, autologous cellular interactions and regulatory mechanisms that occur during normal dendritic cell (DC)-stimulated immune responses is critical to optimizing DC-based immunotherapy. We have found that mature, immunogenic human monocyte-derived DCs (moDCs) up-regulate the immune-inhibitory enzyme, indoleamine 2,3-dioxygenase (IDO). Under stringent autologous culture conditions without exogenous cytokines, mature moDCs expand regulatory T cells (Tregs) by an IDO-dependent mechanism. The priming of resting T cells with autologous, IDO-expressing, mature moDCs results in up to 10-fold expansion of CD4(+)CD25(bright)Foxp3(+)CD127(neg) Tregs. Treg expansion requires moDC contact, CD80/CD86 ligation, and endogenous interleukin-2. Cytofluorographically sorted CD4(+) CD25(bright)Foxp3(+) Tregs inhibit as much as 80% to 90% of DC-stimulated autologous and allogeneic T-cell proliferation, in a dose-dependent manner at Treg:T-cell ratios of 1:1, 1:5, and as low as 1:25. CD4(+)CD25(bright)Foxp3(+) Tregs also suppress the generation of cytotoxic T lymphocytes specific for the Wilms tumor antigen 1, resulting in more than an 80% decrease in specific target cell lysis. Suppression by Tregs is both contact-dependent and transforming growth factor-beta-mediated. Although mature moDCs can generate Tregs by this IDO-dependent mechanism to limit otherwise unrestrained immune responses, inhibition of this counter-regulatory pathway should also prove useful in sustaining responses stimulated by DC-based immunotherapy.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.
Resumo:
Division and proliferation of dendritic cells (DCs) have been proposed to contribute to homeostasis and to prolonged antigen presentation. Whether abnormal proliferation of dendritic cells causes Langerhans cell histiocytosis (LCH) is a highly debated topic. Transgenic expression of simian virus 40 (SV40) T antigens in mature DCs allowed their transformation in vivo while maintaining their phenotype, function, and maturation capacity. The transformed cells were differentiated splenic CD8 alpha-positive conventional dendritic cells with increased Langerin expression. Their selective transformation was correlated with higher steady-state cycling compared with CD8 alpha-negative DCs in wild-type and transgenic mice. Mice developed a DC disease involving the spleen, liver, bone marrow, thymus, and mesenteric lymph node. Surprisingly, lesions displayed key immunohistologic features of Langerhans cell histiocytosis, including expression of Langerin and absence of the abnormal mitoses observed in Langerhans cell sarcomas. Our results demonstrate that a transgenic mouse model with striking similarities to aggressive forms of multisystem histiocytosis, such as the Letterer-Siwe syndrome, can be obtained by transformation of conventional DCs. These findings suggest that conventional DCs may cause some human multisystem LCH. They can reveal shared molecular pathways for human histiocytosis between humans and mice
Resumo:
MOTIVATION: Most bioactive molecules perform their action by interacting with proteins or other macromolecules. However, for a significant fraction of them, the primary target remains unknown. In addition, the majority of bioactive molecules have more than one target, many of which are poorly characterized. Computational predictions of bioactive molecule targets based on similarity with known ligands are powerful to narrow down the number of potential targets and to rationalize side effects of known molecules. RESULTS: Using a reference set of 224 412 molecules active on 1700 human proteins, we show that accurate target prediction can be achieved by combining different measures of chemical similarity based on both chemical structure and molecular shape. Our results indicate that the combined approach is especially efficient when no ligand with the same scaffold or from the same chemical series has yet been discovered. We also observe that different combinations of similarity measures are optimal for different molecular properties, such as the number of heavy atoms. This further highlights the importance of considering different classes of similarity measures between new molecules and known ligands to accurately predict their targets. CONTACT: olivier.michielin@unil.ch or vincent.zoete@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
RESUME La première étape primordiale au cycle de vie du Plasmodium dans un hôte mammifère est l'invasion des hepatocytes par des sporozoites. L'infection finale des hepatocytes est précédée de la traversée de plusieurs cellules hôtes, rompant les membranes plasmiques et ayant comme résultat la sécrétion des facteurs cytotoliques dans le micro-environnement. Ce matériel endogène libéré est fortement stimulant/immunogène et peut servir de signal de danger initiant des réponses distinctes dans diverses cellules. De nos jours, le caractère essentiel et salutaire de la migration des sporozoites comme étape d'infection du Plasmodium est vivement controversée. Ainsi, notre étude a visé à caractériser l'effet de l'interaction du parasite avec ses cellules hôtes d'un point de vue immunologique. En particulier, nous avons voulu évaluer l'effet de la perte de matériel cellulaire pendant l'infection de Plasmodium sur les hepatocytes primaires de souris et sur des cultures cellulaires HepG2. Nous avons observé que les facteurs cytotoxiques dérivés des cellules endommagés activent NF-κB - un important régulateur de réponse inflammatoires -dans des cellules voisines des cellules endommagés, qui sont des cellules hôtes potentielles pour l'infection finale du parasite. Cette activation de NF-κB s'est produite peu de temps après l'infection et a mené in vitro et in vivo à une réduction d'infection de façon dépendante du temps, un effet qui a pu être compensé par l'addition de BAY11-7082, un inhibiteur spécifique de NF-κB. De plus, aucune activation de NF-κB avec des parasites SPECT-/-, incapables de traverser les hepatocytes, n'a été observée. Nous avons montré parla suite que l'activation de NF-κB induit l'expression de l'enzyme iNOS dans les hepatocytes, qui est responsable d'une diminution des hepatocytes infectés. En outre, les hepatocytes primaires des souris MyD88-/- n'ont montré ni activation de NF-κB, ni expression d'iNOS lors de l'infection, ce qui suggère la participation des membres de famille du Toll/IL-1 récepteur dans la reconnaissance des facteurs cytosoxiques. En effet, le manque de MyD88 a augmenté significativement l'infection in vitro et in vivo. D'autre part, un rôle bénéfique pour l'activation de NF-κB a été évalué. Les cellules infectées étaient plus résistantes contre l'apoptose induite par Fas (CD95/Apo-1) que les cellules non infectées ou les cellules infectées dans lesquelles NF-κB a été bloqué par BAY11-7082 in vitro. Paradoxalement, l'expression d'iNOS contribue à la protection des cellules infectées contre l'apoptose pax Fas, puisque le traitement avec l'inhibiteur spécifique SMT (S-methylisothiourea) a rendu les cellules infectées plus susceptibles à l'apoptose. Un effet bénéfique additionnel pour le parasite est que la plupart des cellules hôtes traversées présentent des peptides du parasite aux cellules T cytotoxiques spécifiques et peuvent donc réorienter la réaction immune spécifique sur les cellules non infectées. Nous montrons que les cellules hôtes endommagés par la migration du parasite induit l'inflammation, qui limite l'ampleur de l'infection. D'autre part, nos données soutiennent que la survie du parasite Plasmodium dans le foie est assurée par une augmentation de la résistance des hepatocytes contre l'apoptose. SUMMARY The first obligatory step of the Plasmodium life cycle in the mammalian host is the invasion of hepatocytes by sporozoites. Final hepatocyte infection involves the penetration of several host cells, whose plasma membranes are ruptured in the process, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory / immunogenic and can serve as a danger signal initiating distinct responses in various cells. To date, it is highly controversial whether sporozoite migration through hepatocytes is an essential and beneficial step for Plasmodium infection. Thus, our study aimed at characterizing the effect of the interaction of the parasite with its host cells from an immunological point of view In particular, we wanted to evaluate the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-κB - a main regulator of host inflammatory responses - in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-κB occurred shortly after infection and led to a reduction of infection load in a time dependent manner in vitro and in viva, an effect that could be reverted by addition of the specific NF-κB inhibitor BAY11-7082. In addition, no NF-κB activation was observed when SPECT-/- parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-κB activation causes the induction of inducible nitric oxide synthase (iNOS) expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88-/- mice showed no NF-κB activation and iNOS expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. In a further complementary series of experiments, we assessed a possible beneficial role for the activation of NF-κB. Infected cells were more resistant to Fas (CD95/Apo-1)-mediated apoptosis than uninfected cells or infected cells in which NF-κB was blocked by BAYl1-7082 in vitro. Paradoxically, iNOS expression contributes to the protection of infected cells from Fas-induced apoptosis, since treatment with the specific iNOS inhibitor SMT (S-Methylisothiourea Sulfate) rendered the infected cells more susceptible to apoptosis. An additional beneficial effect of host cell traversal for the parasite is the fact that mainly traversed cells present parasite-derived peptides to specific cytotoxic T cells and therefore may redirect the specific immune response to uninfected cells. In summary, we have shown that host cells wounded by parasite migration induce inflammation, which limits the extent of parasite infection. In addition, our data support the notion that survival of Plasmodium parasites in the liver is mediated by increasing the resistance of hepatocytes to Fas-induced apoptosis.