998 resultados para Cirlce K Club
Resumo:
Objective: This study assesses differences in adiposity, aerobic fitness, and lifestyle characteristics in preschoolers according to their weight status and sports club (SC) participation. Method: As part of the Ballabeina study, 600 randomly selected preschoolers (mean age 5.1 ± 0.6 years; 50.2% girls) were analyzed. Body composition was measured by bioelectrical impedance, aerobic fitness by the 20-meter shuttle run test, and physical activity by accelerometers. Eating habits, media use, and SC participation were assessed by questionnaires. Results: Overweight children (Swiss national percentiles) and children not participating in SC had both lower aerobic fitness and higher % body fat compared to their respective counterparts (all p ≤ 0.028). In addition, children not participating in SC were less physically active, had more media use, and ate less healthy compared to children participating in SC (all p ≤ 0.023). Controlling for parental sociocultural determinants attenuated differences in % body fat, in physical activity, and in eating habits. Conclusion: Aerobic fitness differs both according to weight status and SC participation in preschoolers. Furthermore, in view of the many differences in lifestyle behaviors, SC participation at this age could represent a more discriminatory indicator of healthy lifestyle characteristics than weight status.
Resumo:
Decreased fitness and increased fatness are relevant factors for decreased cardiovascular and bone health in children. One way to increase physical activity and hence fitness and to reduce the risk for overweight might be sports club participation (SCP). PURPOSE: To investigate the association of SCP with fatness and fitness in children in general and in those with increased risk for overweight and/or low fitness. METHODS: A cross-sectional study was conducted in a random sample of 502 first- and fifth-grade primary school children. Fitness components were determined by 10 motor tests and body fatness by the sum of four skinfolds. SCP was defined as participation of at least once a week. RESULTS: Two thirds of all children were participating in a sports club. Girls' and boys' participation rate as well as those of overweight children and of children with overweight parents were comparable to their respective normal weight peers. In contrast, children from migrant families (odds ratio = 0.31; 95% confidence interval = 0.20-0.48) and from inactive parents (odds ratio = 0.16; 95% confidence interval = 0.05-0.45) participated significantly less (all P < 0.001). SCP was associated with endurance (0.53 > beta > 0.37, all P < 0.05) and partly with speed, strength, and coordination (0.41 > beta > 0.18, all P < 0.05). In overweight children and in children from overweight parents and migrant families, this association was not found. There was no association between SCP and fatness in any of the groups. CONCLUSIONS: SCP rates were high and were associated with higher levels of most fitness components in children. Participation rates were lower for children of migrant families and children from inactive parents. In addition, the association between SCP and fitness components was not found in overweight children and in children from overweight parents and migrant families.
Resumo:
Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.
Resumo:
Background: The ratio of the rates of non-synonymous and synonymous substitution (d(N)/d(S)) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, d(N)/d(S) should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As N-e is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and d(N)/d(S) is consistently observed is conflicting. Results: Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to d(N)/d(S), the ratio of radical to conservative amino acid substitutions (K-r/K-c) correlates positively with body mass. Conclusions: Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of d(N)/d(S) and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric.
Resumo:
En este informe se describe el trabajo de fin de máster, centrado en el estudio de la gamificación como herramienta de aprendizaje aplicada a dispositivos móviles. Se ha realizado una revisión de los artículos científicos que tratan sobre el tema de la gamificación como herramienta educativa, para terminar el trabajo desarrollando un prototipo de juego para el aprendizaje de mapas de Karnaugh. Se ha optado por un desarrollo multiplataforma y se han revisado los frameworks de desarrollo más populares para desarrollo móvil multiplataforma, así como los motores de juegos aplicables a este caso. Tras la implementación, se ha probado el prototipo en dos sistemas operativos móviles libres: Android y Firefox OS.
Resumo:
An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.
Resumo:
In the urinary bladder of the toad Bufo marinus aldosterone (between 0.8 and 100 nM) stimulates Na+ transport [half-maximal induction concentration (K1/2) = 6.5 nM]. At low hormone concentrations (0.8-8 nM), the increase of Na+ transport between 0.75 and 2.5 h is accompanied by a fall in transepithelial resistance (R). Higher hormone concentrations (30-800 nM) induce an additional resistance-independent fraction of Na+ transport within 2.5-8 h. From 6 h on, aldosterone (between 0.2 and 20 nM) stimulates in the same tissue the biosynthesis rate of the alpha- and beta-subunits of Na+-K+-ATPase (K1/2 = 3 and 1.5 nM, respectively). New pump synthesis is thus not a prerequisite for the early mineralocorticoid response but might be linked to the late transport event. The mineralocorticoid response is usually ascribed to interaction with the higher affinity type 1 receptor. In the present study we show, however, that at least 55% of the overall Na+ transport response is linked to nuclear occupation of the lower affinity type 2 receptors [dissociation constant (Kd) = 50 nM, maximum number of binding sites (Nmax) = 315 fmol/mg protein]. Distinct aldosterone effects, such as the fall in R and the increase in Na+-K+-ATPase synthesis, are more closely related to occupation of type 1 receptors (Kd = 0.3 nM, Nmax = 23 fmol/mg protein). At maximal induction of these latter parameters, only about 20% of type 2 receptors are occupied. These results suggest that both types of aldosterone receptors are involved in the mediation of the full mineralocorticoid response: type 1 in the early and late and type 2 particularly in the late tissue response.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.