997 resultados para Carbon Tax


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C) and nitrogen (N) stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral) and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years) and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm) with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical absorption of hydrogenated amorphous carbon films (a‐C:H) was measured by spectroscopic ellipsometry. The a‐C:H films were deposited at different substrate temperatures by rf‐plasma of methane. A volume distribution of graphitic cluster size was assumed to reproduce the experimental spectra of the absorption coefficient. The changes in the absorption coefficient and the optical gap, induced by deposition temperature, have been interpreted in terms of changes in the graphitic cluster size of the network. The increase in the deposition temperature produces an increase in the size of the graphitic clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the toxicity of nanoparticles under relevant conditions, it is important to reproducibly disperse nanoparticles in biological media in in vitro and in vivo studies. Here, single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) were physicochemically and biologically characterized when dispersed in phosphate-buffered saline (PBS) and bovine serum albumin (BSA). BSA-SWNT/DWNT interaction resulted in a reduction of aggregation and an increase in particle stabilization. Based on the protein sequence coverage and protein binding results, DWNTs exhibited higher protein binding than SWNTs. SWNT and DWNT suspensions in the presence of BSA increased interleukin-6 (IL-6) levels and reduced tumor necrosis factor-alpha (TNF-α) levels in A549 cells as compared to corresponding samples in the absence of BSA. We next determined the effects of SWNTs and DWNTs on pulmonary protein modification using bronchoalveolar lavage fluid (BALF) as a surrogate collected form BALB/c mice. The BALF proteins bound to SWNTs (13 proteins) and DWNTs (11 proteins), suggesting that these proteins were associated with blood coagulation pathways. Lastly, we demonstrated the importance of physicochemical and biological alterations of SWNTs and DWNTs when dispersed in biological media, since protein binding may result in the misinterpretation of in vitro results and the activation of protein-regulated biological responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Hiilidioksidin kulku lumipeitteisessä ja paljaassa maassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oleaginous yeast Yarrowia lipolytica possesses six acyl-CoA oxidase (Aox) isoenzymes encoded by genes POX1-POX6. The respective roles of these multiple Aox isoenzymes were studied in recombinant Y. lipolytica strains that express heterologous polyhydroxyalkanoate (PHA) synthase (phaC) of Pseudomonas aeruginosa in varying POX genetic backgrounds, thus allowing assessment of the impact of specific Aox enzymes on the routing of carbon flow to β-oxidation or to PHA biosynthesis. Analysis of PHA production yields during growth on fatty acids with different chain lengths has revealed that the POX genotype significantly affects the PHA levels, but not the monomer composition of PHA. Aox3p function was found to be responsible for 90% and 75% of the total PHA produced from either C9:0 or C13:0 fatty acid, respectively, whereas Aox5p encodes the main Aox involved in the biosynthesis of 70% of PHA from C9:0 fatty acid. Other Aoxs, such as Aox1p, Aox2p, Aox4p and Aox6p, were not found to play a significant role in PHA biosynthesis, independent of the chain length of the fatty acid used. Finally, three known models of β-oxidation are discussed and it is shown that a 'leaky-hose pipe model' of the cycle can be applied to Y. lipolytica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of organic residues to the soil can increase soluble organic carbon (SOC) and affect the pH and electrolytic conductivity (EC) of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC), water-extractable organic carbon (WEOC), and water-extractable inorganic carbon (WEIC) in soil treated with manure (chicken, swine, and quail), sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4), organic carbon (OC- KH2PO4), and inorganic C (IC- KH2PO4) extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol) sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis) in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochar (carbonized biomass for agricultural use) has been used worldwide as soil amendment and is a technology of particular interest for Brazil, since its "inspiration" is from the historical Terra Preta de Índios(Amazon Dark Earth), and also because Brazil is the world's largest charcoal producer, generating enormous residue quantities in form of fine charcoal and due to the availability of different residual biomasses, mainly from agroindustry (e.g., sugar-cane bagasse; wood and paper-mill wastes; residues from biofuel industries; sewage sludge etc), that can be used for biochar production, making Brazil a key actor in the international scenario in terms of biochar research and utilization). In the last decade, numerous studies on biochar have been carried out and now a vast literature, and excellent reviews, are available. The objective of this paper is therefore to deliver a critical review with some highlights on biochar research, rather than an exhaustive bibliographic review. To this end, some key points considered critical and relevant were selected and the pertinent literature "condensed", with a view to guide future research, rather than analyze trends of the past.