974 resultados para Capillary
Resumo:
A fiber Bragg grating (FBG) hydrophone with high sensitivity was demonstrated. This hydrophone used a rubber diaphragm and a copper hard core as the sensing element. To compensate the hydrostatic pressure, a capillary tube was fixed at the end of the hydrophone. Theoretical analysis of the acoustic pressure sensitivity was given in this letter. Experiments were carried out to test the frequency response of the hydrophone. The result shows that when the Young's modulus of the diaphragm is higher, a flatter frequency response will be obtained.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.
Resumo:
It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m-2 a-1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.
Resumo:
Chaotic behavior of closed loop pulsating heat pipes (PHPs) was studied. The PHPs were fabricated by capillary tubes with outer and inner diameters of 2.0 and 1.20 mm. FC-72 and deionized water were used as the working fluids. Experiments cover the following data ranges: number of turns of 4, 6, and 9, inclination angles from 5 degrees (near horizontal) to 90, (vertical), charge ratios from 50% to 80%, heating powers from 7.5 to 60.0 W. The nonlinear analysis is based on the recorded time series of temperatures on the evaporation, adiabatic, and condensation sections. The present study confirms that PHPs are deterministic chaotic systems. Autocorrelation functions (ACF) are decreased versus time, indicating prediction ability of the system is finite. Three typical attractor patterns are identified. Hurst exponents are very high, i.e., from 0.85 to 0.95, indicating very strong persistent properties of PHPs. Curves of correlation integral versus radius of hypersphere indicate two linear sections for water PHPs, corresponding to both high frequency, low amplitude, and low frequency, large amplitude oscillations. At small inclination angles near horizontal, correlation dimensions are not uniform at different turns of PHPs. The non-uniformity of correlation dimensions is significantly improved with increases in inclination angles. Effect of inclination angles on the chaotic parameters is complex for FC-72 PHPs, but it is certain that correlation dimensions and Kolmogorov entropies are increased with increases in inclination angles. The optimal charge ratios are about 60-70%, at which correlation dimensions and Kolmogorov entropies are high. The higher the heating power, the larger the correlation dimensions and Kolmogorov entropies are. For most runs, large correlation dimensions and Kolmogorov entropies correspond to small thermal resistances, i.e., better thermal performance, except for FC-72 PHPs at small inclination angles of theta < 15 degrees.
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.
Resumo:
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.
Resumo:
The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.
Resumo:
A monolithic structured polymer preform was formed by in-situ chemical polymerization of high-purity MMA monomer in a home-made mould. The conditions for fabrication of the preforms were optimized and the preform was drawn to microstructured polymer optical fibre. The optical properties of the resultant elliptical-core fibre were measured. This technique provides advantages over alternative preform fabrication methods such as drilling and capillary stacking, which are less suitable for mass production. (c) 2006 Optical Society of America.
Resumo:
砂砾覆盖能防止土壤表面受到雨滴侵蚀,切断土壤的毛细管作用,从而对土壤入渗和蒸发规律产生影响。介绍了国内外砂砾覆盖对入渗和蒸发规律影响的研究成果,现有研究结果表明,降雨入渗与砾石覆盖度之间既有正相关关系,又有负相关关系,入渗不仅与砂砾粒径有关,还与砂砾在土壤表面所处的位置有关;砂砾覆盖能够抑制蒸发,抑制效果与砂砾粒径大小、颜色和厚度等有关。另外,一些国外学者通过定量化模型描述了砂砾覆盖条件下入渗和蒸发规律,但这些定量化模型还是最基本的简化模型,主要偏重于理论说明,直接应用于实践还存在一些问题。
Resumo:
本论文探讨了毛细管电泳电化学检测器的应用。主要包括以下六个方面的内容:1.毛细管电泳与电化学检测联用测定别嗓呤醇及其代谢产物氧化镖吟醇。该方法简单、快速、灵敏。并且应用于加标尿样的分析时也取得了令人满意的结果。2.采用毛细管电泳一安培检测来定量测定中草药中的活性组分姜黄素,用自制的磷酸三丁酷树脂萃取柱来预处理样品,同时实现对姜黄素的浓缩。经毛细管电泳分离后,姜黄素可以用碳纤维电极检测。3.毛细管电泳电化学发光对尿液中的丙环定的检测。用离子交换柱尽可能除去尿中的离子的干扰,电化学发光试剂印比淀钉采用柱后加入的方式,具有三级胺结构的丙环定可被定量检测到。4.溶胶一凝胶一碳复合材料电极作为毛细管电泳安培检测器的表征。我们报道了这种电极的制作,探讨了不同尺寸的电极在毛细管电泳中的应用。当电极直径100μm,一些分析指标如:检测限、线性范围以及重现性都较好,可以做为安培检测器与毛细管电泳联用。5,毛细管电泳脉冲安培检测生物胺。分离并定量检测了四种生物胺,腐胺、尸胺、亚精胺及精胺。并用该方法测定了牛奶中的生物胺。该方法比已报道的毛细管电泳间接紫外检测的检测限低,比气相色谱及液相色谱需样品体积小,不需要烦琐的衍生步骤。6.溶胶一凝胶一碳复合材料电极作为电泳芯片的安培检测器。我们报道了一种简单,重现性好的芯片上的盘电极的制作方法。由于该安培检测器最大的特点就是稳定性好,重现性高所以我们在其上又沉积了一层铜,以扩大该芯片的应用范围。用集成了该安培检测器的芯片,我们分别测定了肾上腺素和葡萄糖。
Resumo:
微全分析系统是目前很前沿的研究领域,尽管现在还没有真正意义的微全分析系统出现,但它代表了分析科学的发展趋势。本文主要研究了ITO导电玻璃和PDMS微芯片毛细管电泳和电化学发光检测方法。微芯片毛细管电泳对与其联用的检测器有相当高的要求,一些传统的检测方法很难适应于微芯片毛细管电泳。电化学发光检测是一种新兴的检测技术,在化学、生物、医学诊断以及免疫分析中展现出良好的应用前景。如何实现和完善微芯片毛细管电泳与电化学发光检测联用技术是本论文的重点。我们采用聚二甲基硅氧烷(poly(dimethylsiloxone),简称PDMS)和玻璃作为芯片材料,以锢锡氧化物(indium桩n oXide,简称工T0)导电玻璃为工作电极设计了一种集成化的微芯片毛细管电泳电化学发光检测器。其中,芯片的底片由工TO导电玻璃经光刻、化学腐蚀等方法处理后得到。ITO是一种透明的导电材料,作为工作电极集成到芯片的底片上,PDMS层与芯片底片采用可逆键合的方式键合,大大简化了操作并提高了电化学发光信号的采集效率。我们采用脯氨酸作为被测物对检测器进行了表征。在实验过程中,微芯片毛细管电泳及工T0工作电极都表现出良好的稳定性。我们还提出了电化学和电化学发光同时检测技术,应用于微芯片毛细管电泳和常规毛细管电泳。在这种电化学和电化学发光双检测模式中,三联吡陡钉(Ru(bpy)32+既作为电化学发光检测所需的发光试剂与被分析物反应生成激发态的Ru(bpy)32+*产生电化学发光信号,又在电极表面平行催化电化学反应得到增强的电流响应,提高电化学检测的灵敏度。电化学信号与电化学发光信号同时产生并分别记录,从而实现了电化学和电化学发光同时检测。我们将这种检测技术与芯片或常规毛细管电泳结合,以多巴胺及三种药物分子山蓖若碱、氧氟沙星和利多卡因作为被测物对其进行了表征。这种同时检测方法与其它多检测模式相比更为简单、方便,比单一的电化学或电化学发光检测可以获得更多的被分析物信息,扩大单一检测方式的应用范围。
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the surface tension of the surface of tension is given. This method is suitable to be used by molecular dynamics simulations.