771 resultados para CONFINEMENT
Resumo:
First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Gamma valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
III-Nitride materials have recently become a promising candidate for superior applications over the current technologies. However, certain issues such as lack of native substrates, and high defect density have to be overcome for further development of III-Nitride technology. This work presents research on lattice engineering of III-Nitride materials, and the structural, optical, and electrical properties of its alloys, in order to approach the ideal material for various applications. We demonstrated the non-destructive and quantitative characterization of composition modulated nanostructure in InAlN thin films with X-ray diffraction. We found the development of the nanostructure depends on growth temperature, and the composition modulation has impacts on carrier recombination dynamics. We also showed that the controlled relaxation of a very thin AlN buffer (20 ~ 30 nm) or a graded composition InGaN buffer can significantly reduce the defect density of a subsequent epitaxial layer. Finally, we synthesized an InAlGaN thin films and a multi-quantum-well structure. Significant emission enhancement in the UVB range (280 – 320 nm) was observed compared to AlGaN thin films. The nature of the enhancement was investigated experimentally and numerically, suggesting carrier confinement in the In localization centers.
Resumo:
Quién Es, Quién Somos? Spic’ing into Existence claims a four-fold close-reading: first, analysis of texts: from theoretical meditations to (prison) memoir and film. Second, a half dozen central figures appear, largely Latinx and black American. They cut across a score of registers, socio-economics, ideological reservations, but all are, as Carl Carlton sang, poetry in motion. Writers, poets, theologians, pathologists, artists, comedians, actors, students whose vocation is invocation, the inner surge of their calling. Third, the manuscript draws from a series of historical moments—from radical liberation of the late 60s, to contemporary student activism. Finally, this body of work is movement, in all its social, gestural, and kinesthetic viscera. From this last heading, we peel away layers of what I call the ethnopoet, the fascia undoing that reveals its bio-political anatomy, dressing its bare life with kinship speech. First, the social revolutions of the Civil Rights, Black Power, abolitionism, the Black Panthers and Young Lords, boycotts and jarring artistic performances. These events are superficial not in vain sense, but key epicenters of underground murmurings, the workings of a cunning assailant. She robs not lavish estates, but another day to breathe. Gesturally, as perhaps the interlocutor, lies this author, interspersing his own diatribes to conjure her presence. The final branch is admittedly the most intangible. Kinesthetically, we map the nimbleness, footwork lígera of what I call the ethnopoet. Ethnopoet is no mere aggregate of ethnicity and poetry, but like chemical reaction, the descriptor for its behavior under certain pressures, temperatures, and elements. Elusive and resisting confinement, and therefore definition, the ethnopoet is a shapeshifting figure of how racialized bodies [people of color] respond to hegemonic powers. She is, at bottom, however, a native translator, the plural-lensed subject whose loyalty is only to the imagination of a different world, one whose survival is not contingent upon her exploitation. The native translator’s constant re-calibrations of oppressive power apparatuses seem taxing at best, and near-impossible, at worst. To effectively navigate through these polarized loci, she must identify ideologies that in turn seek “affective liberatory sances” in relation to the dominant social order (43). In a kind of performative contradiction, she must marshall the knowledge necessary to “break with ideology” while speaking within it. Chicana Studies scholar, Chela Sandoval, describes this dual movement as “meta-ideologizing”: the appropriation of hegemonic ideological forms in order to transform them (82). Nuestros padres se subieron encima de La Bestia, y por eso somos pasageros a ese tren. Y ya, dentro su pansa, tenemos que ser vigilantes cuando plantamos las bombas. In Methodology of the Oppressed, Sandoval schematizes this oppositional consciousness around five principle categories: “equal rights,” “revolutionary,” “supremacist,” “separatist,” and “differential.” Taken by themselves, the first four modes appear mutually exclusive, incapable of occupying the same plane, until a fifth pillar emerges. Cinematographic in nature, differential consciousness, as Sandoval defines it, is “a kinetic motion that maneuvers, poetically transfigures, and orchestrates while demanding alienation, perversion, and reformation in both spectators and practitioners” (44). For Sandoval, then, differential consciousness is a methodology that privileges an incredible sense mobility, one reaching artistic sensibilities. Our fourth and final analytic of movement serves an apt example of this dual meaning. Lexically speaking, ‘movement’ may be regarded as a political mobilization of aggrieved populations (through sustained efforts), or the process of moving objects (people or otherwise) from one location to another. Praxis-wise, it is both action and ideal, content and form. Thus, an ethnic poetics must be regarded less as a series of stanzas, shortened lyric, or even arrangement of language, but as a lens through which peripheralized peoples kaleidecope ideological positions in an “original, eccentric, and queer sight” (43). Taking note of the advantages of postponing identifications, the thesis stands its ground on the term ethnopoet. Its abstraction is not dewey-eyed philosophy, but an anticipation of poetic justice, of what’s to come from callused hands. This thesis is divided into 7.5 chapters. The first maps out the ethnopoet’s cartographies of struggle. By revisiting that alleged Tío Tomas, Richard Rodriguez, we unearth the tensions that negatively, deny citizenship to one silo, but on the flipside, engender manifold ways of seeing, hearing, and moving . The second, through George Jackson’s prison memoirs, pans out from this ethnography of power, groping for an apparatus that feigns an impervious prestige: ‘the aesthetic regime of coercion.’ In half-way cut, the thesis sidesteps to spic into existence, formally announcing, through Aime Cesaire, myself, and Pedro Pietri, the poeticization of trauma. Such uplift denies New Age transcendence of self, but a rehearsal of our entrapment in these mortal envelopes. Thirdly, conscious of the bleeding ethnic body, we cut open the incipient corpse to observe her pathologist. Her native autopsies offer the ethnic body’s posthumous recognition, the ethnopoetics ability to speak for and through the dead. Chapter five examines prolific black artists—Beyonce and Kendrick Lamar—to elide the circumvention of their consumption via invoking radical black hi/her-stories, ones fragmenting the black body. Sixth, the paper compares the Black Power Salute of the 1968 Mexico City Olympics to Duke’s Mi Gente Boycott of their Latino Student Recruitment Weekend. Both wielded “silent gestures,” that shrewdly interfered with white noise of numbed negligence. Finally, ‘taking the mask off’ that are her functionalities, the CODA expounds on ethnopoet’s interiority, particularly after the rapid re-calibration of her politics. Through a rerun of El Chavo del Ocho, one of Mexican television’s most cherished shows, we tune into the heart-breaking indigence of barrio residents, only to marvel at the power of humor to, as Friday’s John Witherspoon put it, “fight another day.” This thesis is the tip of my tongue. Y por una vez, déjala que cante.
Resumo:
Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.
Resumo:
We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.
Resumo:
Controlling the growth mechanism for nano-structures is one of the most critical topics in material science. In the past 10 years there has been intensive research worldwide in IIIN based nanowires for its many unique photonic and electrical properties at this scale. There are several advantages to nanostructuring III-N materials, including increased light extraction, increased device efficiency, reduction of efficiency droop, and reduction in crystallographic defect density. High defect densities that normally plague III-N materials and reduce the device efficiency are not an issue for nano-structured devices such as LEDs, due to the effective strain relaxation. Additionally regions of the light spectrum such as green and yellow, once found difficult to achieve in bulk planar LEDs, can be produced by manipulating the confinement and crystal facet growth directions of the active regions. A cheap and easily repeatable self-assembly nano-patterning technique at wafer scale was designed during this thesis for top down production of III-N nanowires. Through annealing under ammonia and N2 gas flow, the first reported dislocation defect bending was observed in III-N nanorods by in-situ transmission electron microscopy heating. By growing on these etched top down nanorods as a template, ultra-dense nanowires with apex tipped semi-polar tops were produced. The uniform spacing of 5nm between each wire is the highest reported space-filling factor at 98%. Finally by using these ultra-dense nanorods bridging the green gap of the light spectrum was possible, producing the first reported red, yellow, green light emission from a single nano-tip.
Resumo:
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
Resumo:
A low-threshold nanolaser with all three dimensions at the subwavelength scale is proposed and investigated. The nanolaser is constructed based on an asymmetric hybrid plasmonic F-P cavity with Ag-coated end facets. Lasing characteristics are calculated using finite element method at the wavelength of 1550 nm. The results show that owing to the low modal loss, large modal confinement factor of the asymmetric plasmonic cavity structure, in conjunction with the high reflectivity of the Ag reflectors, a minimum threshold gain of 240 cm−1 is predicted. Furthermore, the Purcell factor as large as 2518 is obtained with optimized structure parameters to enhance rates of spontaneous and stimulated emission.
Resumo:
Light confinement and controlling an optical field has numerous applications in the field of telecommunications for optical signals processing. When the wavelength of the electromagnetic field is on the order of the period of a photonic microstructure, the field undergoes reflection, refraction, and coherent scattering. This produces photonic bandgaps, forbidden frequency regions or spectral stop bands where light cannot exist. Dielectric perturbations that break the perfect periodicity of these structures produce what is analogous to an impurity state in the bandgap of a semiconductor. The defect modes that exist at discrete frequencies within the photonic bandgap are spatially localized about the cavity-defects in the photonic crystal. In this thesis the properties of two tight-binding approximations (TBAs) are investigated in one-dimensional and two-dimensional coupled-cavity photonic crystal structures We require an efficient and simple approach that ensures the continuity of the electromagnetic field across dielectric interfaces in complex structures. In this thesis we develop \textrm{E} -- and \textrm{D} --TBAs to calculate the modes in finite 1D and 2D two-defect coupled-cavity photonic crystal structures. In the \textrm{E} -- and \textrm{D} --TBAs we expand the coupled-cavity \overrightarrow{E} --modes in terms of the individual \overrightarrow{E} -- and \overrightarrow{D} --modes, respectively. We investigate the dependence of the defect modes, their frequencies and quality factors on the relative placement of the defects in the photonic crystal structures. We then elucidate the differences between the two TBA formulations, and describe the conditions under which these formulations may be more robust when encountering a dielectric perturbation. Our 1D analysis showed that the 1D modes were sensitive to the structure geometry. The antisymmetric \textrm{D} mode amplitudes show that the \textrm{D} --TBA did not capture the correct (tangential \overrightarrow{E} --field) boundary conditions. However, the \textrm{D} --TBA did not yield significantly poorer results compared to the \textrm{E} --TBA. Our 2D analysis reveals that the \textrm{E} -- and \textrm{D} --TBAs produced nearly identical mode profiles for every structure. Plots of the relative difference between the \textrm{E} and \textrm{D} mode amplitudes show that the \textrm{D} --TBA did capture the correct (normal \overrightarrow{E} --field) boundary conditions. We found that the 2D TBA CC mode calculations were 125-150 times faster than an FDTD calculation for the same two-defect PCS. Notwithstanding this efficiency, the appropriateness of either TBA was found to depend on the geometry of the structure and the mode(s), i.e. whether or not the mode has a large normal or tangential component.
Resumo:
How do the magnetic fields of massive stars evolve over time? Are their gyrochronological ages consistent with ages inferred from evolutionary tracks? Why do most stars predicted to host Centrifugal Magnetospheres (CMs) display no H$\alpha$ emission? Does plasma escape from CMs via centrifugal breakout events, or by a steady-state leakage mechanism? This thesis investigates these questions via a population study with a sample of 51 magnetic early B-type stars. The longitudinal magnetic field \bz~was measured from Least Squares Deconvolution profiles extracted from high-resolution spectropolarimetric data. New rotational periods $P_{\rm rot}$ were determined for 15 stars from \bz, leaving only 3 stars for which $P_{\rm rot}$ is unknown. Projected rotational velocities \vsini~were measured from multiple spectral lines. Effective temperatures and surface gravities were measured via ionization balances and line profile fitting of H Balmer lines. Fundamental physical parameters, \bz, \vsini, and $P_{\rm rot}$ were then used to determine radii, masses, ages, dipole oblique rotator model, stellar wind, magnetospheric, and spindown parameters using a Monte Carlo approach that self-consistently calculates all parameters while accounting for all available constraints on stellar properties. Dipole magnetic field strengths $B_{\rm d}$ follow a log-normal distribution similar to that of Ap stars, and decline over time in a fashion consistent with the expected conservation of fossil magnetic flux. $P_{\rm rot}$ increases with fractional main sequence age, mass, and $B_{\rm d}$, as expected from magnetospheric braking. However, comparison of evolutionary track ages to maximum spindown ages $t_{\rm S,max}$ shows that initial rotation fractions may be far below critical for stars with $M_*>10 M_\odot$. Computing $t_{\rm S,max}$ with different mass-loss prescriptions indicates that the mass-loss rates of B-type stars are likely much lower than expected from extrapolation from O-type stars. Stars with H$\alpha$ in emission and absorption occupy distinct regions in the updated rotation-magnetic confinement diagram: H$\alpha$-bright stars are found to be younger, more rapidly rotating, and more strongly magnetized than the general population. Emission strength is sensitive both to the volume of the CM and to the mass-loss rate, favouring leakage over centrifugal breakout.
Resumo:
Colloidal azopolymer nanospheres assembled on a glass substrate were exposed to a single collimated laser beam. The combination of photo-fluidic elongation of the spherical colloids and light induced self-organization of the azopolymer film allows the quasiinstantaneous growth of a large amplitude surface relief grating. Pre-structuration of the sample with the nanosphere assembly supports faster creation of the spontaneous pattern. Confinement into the nanospheres provides exceptionally large modulation amplitude of the spontaneous relief. The method is amenable to any kind of photoactive azo-materials.
Resumo:
En el presente trabajo indagaremos sobre la reconfiguración de las dinámicas institucionales en dos cárceles de la provincia de Santa Fe, Argentina, tras la inserción del dispositivo religiosoevangélico- pentecostal. Los casos serán las penitenciarías n° 3 —mediana seguridad— y n° 11 — máxima seguridad—, y nos interrogaremos sobre las relaciones de reciprocidad que el dispositivo religioso configura en el encierro, en cómo dichas relaciones definen nuevas estrategias de gobierno por parte del servicio penitenciario y de qué manera se rediseñan las relaciones de poder en el dispositivo carcelario. Abordaje comparativo que responde a la hipótesis de que el dispositivo religioso-evangélicopentecostal construye matrices comunes de ordenamiento social, funcionamiento y reciprocidades en el encierro pero, al mismo tiempo, consolida su funcionamiento a raíz de una identificación precisa de las necesidades y oportunidades de los sujetos según atraviesen situaciones de ingreso o egreso carcelario.
Resumo:
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed,
showing improvements in the directionality and flux of the laser-driven neutron beams.
Resumo:
Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion