914 resultados para CELLULAR IMMUNE RESPONSE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural killer (NK) cells are cytotoxic cells that play a critical role in the innate immune response against infections and tumors. In the elderly, the cytotoxic function of NK cells is often compromised. Telomeres progressively shorten with each cell division and with age in most somatic cells eventually leading to chromosomal instability and cellular senescence. We studied the telomere length in NK cell subsets isolated from peripheral blood using "flow FISH," a method in which the hybridization of telomere probe in cells of interest is measured relative to internal controls in the same tube. We found that the average telomere length in human NK cells decreased with age as was previously found for human T lymphocytes. Separation of adult NK cells based on CD56 and CD16 expression revealed that the telomere length was significantly shorter in CD56(dim)CD16(+) (mature) NK cells compared to CD56(bright)CD16(-) (immature) NK cells from the same donor. Furthermore, sorting of NK cells based on expression of activation markers, such as NKG2D and LFA-1, revealed that NK cells expressing these markers have significantly shorter telomeres. Telomere fluorescence was very heterogeneous in NK cells expressing CD94, killer inhibitory receptor (KIR), NKG2A, or CD161. Our observations indicate that telomeric DNA in NK cells is lost with cell division and with age similar to what has been observed for most other hematopoietic cells. Telomere attrition in NK cells is a plausible cause for diminished NK cell function in the elderly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sepsis-related organ failure is the leading cause of mortality in European intensive care units (ICU). Although the inflammatory cascade of mediators in response to infection is well known, the relationships between regional inflammation, microvascular heterogeneity, hypoxia and hypoxia-inducible gene expression, and finally, organ dysfunction, are unknown. Growing evidence suggests that not only low oxygen supply to the tissues secondary to macrovascular and microvascular alterations, but also altered cellular oxygen utilization is involved in the development of multiorgan dysfunction [1]–[3]. Microbial products and innate and adaptive dysregulated immune response to infection directly affect parenchymal cells of organs and may contribute to multiorgan dysfunction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Psychosocial factors have been described as affecting cellular immune measures in healthy subjects. In patients with early breast cancer we explored bi-directional psycho-immune effects to determine whether subjective burden has an impact on immune measures, and vice versa. Patients (n = 239) operated for early breast cancer and randomized into International Breast Cancer Study Group (IBCSG) adjuvant clinical trials were assessed immediately before the beginning of adjuvant treatment (baseline) and 3 and 6 months thereafter, at the beginning of the corresponding treatment cycle. Cellular immune measures (leukocytes, lymphocytes, lymphocyte subset counts), markers of activation of the cellular immune system (beta2-microglobulin, soluble interleukin-2 receptor serum levels), and self-report subjective burden (global indicators of physical well-being, mood, coping effort) were assessed concurrently. The relationship between subjective burden and gradients of immune measures was investigated with regression analyses controlling for adjuvant treatment. There was a pattern of small negative associations between all variables assessing subjective burden before the beginning of adjuvant therapy with the gradients of the markers of activation of the cellular immune system and NK cell counts. In particular, better mood predicted a decline in the course of beta2-microglobulin and IL-2r at months 3 and 6. The gradient of beta2-microglobulin was associated with mood and coping effort at month 3. However, the effect sizes were very small. In conclusion, in this explorative investigation, there was an indication for subjective burden affecting and being affected by markers of activation of the cellular immune system during the first 3 and 6 months of adjuvant therapy. The question of clinical significance remains unanswered. These associations have to be investigated with refined assessment tools and schedules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiratory disease in beef calves has been associated with the stress of weaning. Management practices commonly delay vaccination of calves to this time, and weaning stress could potentially suppress the immune response. To reduce this stress we have been experimenting with a procedure termed “pasture weaning” in which the dams are removed and the calves remain on pasture. Observation suggests that calves weaned with this approach adapt to the weaned state much better than those held in drylot. Consequently, one would expect less stress-mediated effects including those on the immune system. Calves were weaned and assigned to groups that were pasture or drylot weaned, and calves within the groups were vaccinated with one of two inactivated virus vaccines by either the intramuscular or subcutaneous route. Weaning placement did not affect antibody responses to the viruses included in the vaccines. The route of administration did not influence responses with subcutaneous injection inducing responses equivalent to the intramuscular site. Utilization of this route for vaccination could be advantageous because it precludes the tissue damage and hidden abscessation that sometimes results from intramuscular injections. A distinct difference was noted in the immunogenicity of the vaccines with the Vira Shield product yielding significantly better responses to all viral entities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Infectious diseases after solid organ transplantation (SOT) are one of the major complications in transplantation medicine. Vaccination-based prevention is desirable, but data on the response to active vaccination after SOT are conflicting. METHODS In this systematic review, we identify the serologic response rate of SOT recipients to post-transplantation vaccination against tetanus, diphtheria, polio, hepatitis A and B, influenza, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitides, tick-borne encephalitis, rabies, varicella, mumps, measles, and rubella. RESULTS Of the 2478 papers initially identified, 72 were included in the final review. The most important findings are that (1) most clinical trials conducted and published over more than 30 years have all been small and highly heterogeneous regarding trial design, patient cohorts selected, patient inclusion criteria, dosing and vaccination schemes, follow up periods and outcomes assessed, (2) the individual vaccines investigated have been studied predominately only in one group of SOT recipients, i.e. tetanus, diphtheria and polio in RTX recipients, hepatitis A exclusively in adult LTX recipients and mumps, measles and rubella in paediatric LTX recipients, (3) SOT recipients mount an immune response which is for most vaccines lower than in healthy controls. The degree to which this response is impaired varies with the type of vaccine, age and organ transplanted and (4) for some vaccines antibodies decline rapidly. CONCLUSION Vaccine-based prevention of infectious diseases is far from satisfactory in SOT recipients. Despite the large number of vaccination studies preformed over the past decades, knowledge on vaccination response is still limited. Even though the protection, which can be achieved in SOT recipients through vaccination, appears encouraging on the basis of available data, current vaccination guidelines and recommendations for post-SOT recipients remain poorly supported by evidence. There is an urgent need to conduct appropriately powered vaccination trials in well-defined SOT recipient cohorts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the immune response after starting antiretroviral treatment (ART) in 15,646 HIV-infected patients with or without tuberculosis (TB) at presentation in 3 ART programs in South Africa between 2003 and 2010. Patients presenting with TB had similar increases in CD4 cells compared with all other patients (adjusted difference 4.9 cells/µL per 6 months, 95% confidence interval: 0.2 to 9.7). Younger age, advanced clinical stage, female sex, and lower CD4 cell count at ART start were all associated with steeper CD4 slopes. In South Africa, HIV-infected patients presenting with TB experience immune recovery after starting ART that is no worse than in other patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vertical transmission from an infected cow to its fetus accounts for the vast majority of new Neospora caninum infections in cattle. A vaccine composed of a chimeric antigen named recNcMIC3-1-R, based on predicted immunogenic domains of the two microneme proteins NcMIC1 and NcMIC3, the rhoptry protein NcROP2, and emulsified in saponin adjuvants, significantly reduced the cerebral infection in non-pregnant BALB/c mice. Protection was associated with a mixed Th1/Th2-type cytokine response. However, the same vaccine formulation elicited a Th2-type immune response in pregnant mice and did not prevent vertical transmission or disease, neither in dams nor in offspring mice. In this study, an alternative vaccine formulation containing recNcMIC3-1-R emulsified in Freund’s incomplete adjuvant, a stimulator of the cellular immunity, was investigated. No protection against vertical transmission and cerebral infection in the pregnant mice and a very limited protective effect in the non-pregnant mice were observed. The vaccine induced a Th1-type immune response characterized by high IgG2a titres and strong IFN-γ expression, which appeared detrimental to pregnancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences between allergic contact dermatitis and irritant contact dermatitis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The von Willebrand factor (VWF)-cleaving metalloprotease, ADAMTS13 (adisintegrin and metalloprotease with thrombospondin type 1 motifs-13) is the only known target of the dysregulated immune response in acquired TTP. Autoantibodies to ADAMTS13 either neutralize its activity or accelerate its clearance, thereby causing a severe deficiency of ADAMTS13 in plasma. As a consequence, size regulation of VWF is impaired and the persistence of ultra-large VWF (ULVWF) multimers facilitates microvascular platelet aggregation causing microangiopathic haemolytic anaemia and ischaemic organ damage. Autoimmune TTP although a rare disease with an annual incidence of 1.72 cases has a mortality rate of 20% even with adequate therapy. We describe the mechanisms involved in ADAMTS13 autoimmunity with a focus on the role of B- and T-cells in the pathogenesis of this disorder. We discuss the potential translation of recent experimental findings into future therapeutic concepts for the treatment of acquired TTP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.