883 resultados para Body weight--Psychological aspects.
Resumo:
in a recent publication, Eriksson et al. [1] explored the relationship between size at birth and resting metabolic rate and body composition in adulthood in a cohort of over 300 men and women. They reported an unexpected finding that people of both sexes who had a low birth weight also had a higher metabolic activity per unit muscle tissue. This conclusion was drawn from an analysis where resting metabolic rate (expressed as kcal/kg fat-free mass) in adulthood was examined relative to the birth weight of the subject. One explanation that they suggested was that the apparent increased activity of muscle tissue resulted from an increased sympathetic drive associated with low birth weight. There may be a less physiological reason for the findings of Eriksson et al. Whilst the data are not given specifically in the text, it can be seen clearly from Fig. 1 in the paper that the mean fat-free mass measured in adulthood increased, in both sexes, from the lightest birth weight group to the heaviest birth weight group when the cohort were divided into tertiles based on birth weight. The crux of the issue is that in many - indeed most - cases, expressing resting energy expenditure as kcal/kg fat-free mass does not totally adjust for fat-free mass [2 - 5], and a bias is introduced so that those who have a higher fat-free mass will tend to have a lower resting energy expenditure when expressed per kg fat-free mass. This bias found when expressing many physiological parameters relative to body size, body weight or body composition has long been known [6], and should be carefully considered by appropriate adjustment and hence analysis.
Resumo:
Purpose: The training program undertaken by many athletes will affect directly the total, habitual energy requirements of that individual. Unless that energy requirement is met via the diet and or supplementation, chronic negative energy balance will ensue, which will have both short-term and long-term effects not only on performance but also on general health. The aim of this research was therefore to determine the energy expenditure (EE) and hence energy requirements of lightweight female rowers and, further, to compare this with their self-reported energy intake (EI). Methods: The El of seven lightweight female rowers was measured using a self-reported 4-d weighed dietary record. EE was determined using the doubly labeled water (DLW) technique over a 14-d period. Results: The mean (+/-SD) age, height, and weight of the subjects was 20 (+/-1.1) yr, 168.8 (+/-4.7) cm, and 60.9 (+/-23) kg, respectively. The rowers self-reported El was 2214 (+/-313) kcal.d(-1) and their total EE was 3957 (+/-1219) kcal.d(-1). After adjusting total EE for changes in body weight (mean (+/-SD) - 1.2 (+/-1.2) kg), the comparison between adjusted El and reported showed a bias to underreporting of 1133 (+/-1539) kcal.d(-1) or 34%. The bias was not consistent across adjusted El, and two of the seven subjects overreported their intake. Conclusions: Due to the underreporting of EI, diet recording may not be an appropriate way of assessing energy requirements in lightweight female rowers. A benefit of accurately determining energy requirements, as with DLW, is that female lightweight rowers will be able to successfully manipulate their EI and achieve the set weight cut-off for participation without compromising their health or performance.
Resumo:
Patients with chronic liver disease (CLD) are catabolic and GH-resistant. The effects of supraphysiological recombinant human GH (rhGH; 0.2 IU.kg(-1).d(-1)) treatment in adults with CLD were assessed in a randomized, double-blind, placebo-controlled cross-over trial (4-wk dietary run-in, 4-wk treatment, and 2-wk wash-out phases). Nine adults with mild- to moderate-severity CLD participated (median age, 49 yr; three males and six females; Child's classification A in six and B in three). Biopsy-proven etiologies were: alcohol (four patients), primary biliary cirrhosis (three patients), non-A, non-B, non-C hepatitis (one patient), and cryptogenic (one patient). Treatment with rhGH increased serum IGF-I (median increase over placebo, +93 mug.liter(-1); P = 0.004), IGF-binding protein-3 (+0.9 mg.liter(-1): P = 0.004), and acid labile subunit (+10.7 nM; P = 0.004). Total body potassium (+8.0 g; P = 0.023), body weight (+1.6 kg; P = 0.008), and total body water (by bioelectrical impedance; +4.9 kg; P = 0.004) increased. Resting metabolic rate (+313 ml.kg(-1).min(-1); P = 0.004) and lipid oxidation (+1072.0 kcal.d(-1); P = 0.032) increased. Metabolic changes included increased fasting plasma glucose (+1.2 mm; P = 0.008), insulin (+33.8 mU.liter(-1); P = 0.004), C-peptide (+0.7 nM; P = 0.004), and free-fatty acids (+0.1 mEq.liter(-1); P = 0.04). Clinical side effects included worsening edema and ascites. Hepatocellular function did not change. Therefore, rbGH treatment in CLD: 1) overcame hepatic GH resistance; 2) may have improved whole-body protein catabolism; 3) increased lipolysis and lipid oxidation; 4) increased insulin resistance; and 5) had potent antinatriuretic effects. Long-term safety and efficacy require further assessment.
Resumo:
An improved HPLC method has been established for the measurement of harderoporphyrin (HP) in the harderian gland of rats and mice. Groups of female Wistar rats were given a single oral dose of sodium arsenite at 0, 0.5 or 5.0 mg As(III)/kg body weight, or a slurry of arsenic-contaminated soil at equivalent dose rates and the animals were sacrificed 96 h after dosing. A group of C57BL/6J female mice were chronically exposed to drinking water containing 500 mug As(V)/I of sodium arsenate ad libitum for over 2 years. Porphyrins were measured in the harderian glands of rats and mice. Our results suggest that HP and the alteration of the porphyrin profile in the harderian glands of rodents is a highly sensitive biomarker for both single sub-lethal and chronic arsenic exposure. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
It is currently unclear whether it is the need to maintain metabolic efficiency, the need to keep skeletal loading below critical force levels, or simple mechanical factors that drive the walk-to-run (W R) and run-to-walk (R-W) transitions in human gait. Eighteen adults (9 males and 9 females) locomoted on an instrumented treadmill using their preferred gait. Each completed 2 ascending (W-R) and 2 descending (R-W) series of trials under three levels of loading (0%, 15% and 30% body weight). For each trial, participants locomoted for 60 s at each of 9 different speeds -4 speeds both above and below their preferred transition speed (PTS) plus their PTS. Evidence was sought for critical levels of key kinetic (maximum vertical force, impulse, first peak force, time to first peak force and maximum loading rate), energetic (oxygen consumption, transport cost) and mechanical variables (limb lengths, strength) predictive of the gait transition. Analyses suggested the kinetic variables of time to first peak force and loading rate as the most likely determinants of the W-R and R-W transitions. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Twenty-three dogs and three cats with generalised demodicosis were treated with weekly subcutaneous injections of doramectin at a dose of 600mcg/kg body weight. All dogs and cats responded to treatment by going into remission. The median time until skin scrape results were negative was eight weeks (range five to 20 weeks). Ten dogs remained in remission after the first treatment, five were lost to follow up and seven needed a second course of doramectin or were maintained in remission by monthly injections. Time to when skin scrape results were negative for the cats was two to three weeks with one cat still in remission four years later. The other two cats were euthanased due to their underlying disease whilst only four and six months into remission. Weekly subcutaneous doramectin injections are useful in the treatment of generalised demodicosis in dogs and cats. No systemic side effects of the drug were seen, the injection was painless and no reactions were seen at the sites.
Resumo:
A sensitive method using HPLC with fluorescence detection has been established for the measurement of porphyrins in biological materials. The assay recoveries were 88.0 +/- 1.8% for protoporphyrin IX in the blood, and ranged from 98.3 +/- 2.7% to 111.1 +/- 7.4% for various porphyrins in the urine. This method was employed to investigate the altered porphyrin profiles in rats after a single dose of various arsenicals including soluble sodium arsenate and sodium arsenite, and the relatively insoluble calcium arsenite, calcium arsenate and arsenic-contaminated soils at dose rates of 5 mg/kg or 0.5 mg/kg body weight. Porphyrin concentrations increased within 24-48hr after the arsenic treatment in blood and urine. Protoporphyrin IX is the predominant porphyrin in the blood. In rats administered 5 mg As(III)/kg body weight, protoporphyrin IX concentration elevated to 123% of them control values in rats, 24 hr after the treatment. Higher increases were recorded in the urinary protoporphyrin IX (253% at 24 hr; 397% on day 2), uroporphyrin (121% at 24 hr; 208% on day 2) and coproporphyrin 111 (391% at 24 hr; 304% on day 2), while there was no significant increase (109% on day 3) observed in the urinary coproporphyrin I excretion. In rats administered 5 mg As(V)/kg, urinary excretion of protoporphyrin IX, uroporphyrin, coproporphyrin Ill and coproporphyrin I elevated to the maximum levels by 48 hr with the corresponding percentage values compared to the control being 177%, 158%, 224% and 143%, respectively. In rats dosed with 5 mg As(III)/kg, the increases (expressed as % of the control values) of protoporphyrin IX in the blood were in the order: sodium arsenite (144%) > sodium arsenate (125%) greater than or equal to calcium arsenite (123%) > calcium arsenate. In contrast, there was no significant increase of protoporphyrin K when the six arsenic-contaminated cattlei dip soils and nine copper chrome arsenate (CCA-contaminated) soils were administered to the rats. Probable explanations are discussed.
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
OBJECTIVE - To assess the timing of fetal growth spurt among pre-existing diabetic pregnancies (types 1 and 2) and its relationship with diabetic control. To correlate fetal growth acceleration with factors that might influence fetal growth. RESEARCH DESIGN AND METHODS - This retrospective study involved all pregestational diabetic pregnancies delivered at a tertiary obstetric hospital in Australia between 1 January 1994 and 31 December 1999. Pregnancies with major congenital fetal anomalies, multiple pregnancies, small-for-gestational-age pregnancies (90th centile for gestation) were compared with babies with normal birth weights. RESULTS- A total of 101 diabetic pregnancies were included. Diabetic mothers, who had LGA babies, had significantly higher prepregnancy body weight and BMI (P < 0.05). There were no differences in maternal age or parity among the two groups. There were also no differences in the first-, second-, and third-trimester HbA(1c) levels between the two groups. The abdominal circumference z-scores were significantly higher for LGA babies from 18 weeks and thereafter. The differences increased progressively as the gestation advanced. Maximum difference was noted in the third trimester (30-38 weeks). CONCLUSIONS - Fetal growth acceleration in LGA fetuses of diabetic mothers starts in the second trimester, from as early as 18 weeks. In this study, glucose control did not appear to have a direct effect on the incidence of LGA babies, and such observation might result from the effects of other confounding factors.
Resumo:
The effects of dietary level of protein (151, 181 g/kg), lysine (nil, 10g L-lysine hydrochloride/kg) and methionine (nil, 5g DL-methionine/kg) on the production performance and egg yolk cholesterol of two strains of birds were studied for 12 weeks. Birds fed on the high protein diet had higher body weight gain, feed conversion ratio (FCR), rate of lay, egg weight and mass and yolk weight and mass. A high lysine diet decreased feed intake and improved FCR. High dietary level of methionine increased egg yolk cholesterol. There were differences between strains of laying bird in feed intake, rate of lay, egg and yolk weights and egg cholesterol content. It is concluded that strain of bird and dietary level of protein and lysine influenced the production performance of birds. Whilst, egg yolk cholesterol was not reduced by any of the factors studied.
Resumo:
Diabetes mellitus is now occurring in epidemic proportions in many countries. Owing to the limited effectiveness of drug prophylaxis of diabetic complications after diabetes has developed, it may be more appropriate to investigate ways to prevent the onset of diabetes. A recent trial published by the Diabetes Prevention Programme Research Group investigated whether lifestyle changes or metformin were effective in delaying the onset of diabetes in subjects with impaired glucose tolerance. The goals of the intensive lifestyle intervention were to achieve and maintain a weight reduction of 7% through a low-calorie, low-fat diet and to engage in physical activity of moderate intensity, such as brisk walking, for at least 150 min/week. The effectiveness of the intensive lifestyle intervention on body weight was initially quite good but decreased over time. Metformin caused some weight loss but to a lesser extent than the intensive lifestyle intervention. Both therapies decreased the fasting plasma glucose levels to a similar extent initially. The intensive lifestyle intervention decreased plasma glycosylated haemoglobin levels to a greater extent than metformin. Both intensive lifestyle intervention and metformin reduced the incidence of diabetes, with the lifestyle intervention having the greater effect.
Resumo:
Background: A knowledge of energy expenditure in infancy is required for the estimation of recommended daily amounts of food energy, for designing artificial infant feeds, and as a reference standard for studies of energy metabolism in disease states. Objectives: The objectives of this study were to construct centile reference charts for total energy expenditure (TEE) in infants across the first year of life. Methods: Repeated measures of TEE using the doubly labeled water technique were made in 162 infants at 1.5, 3, 6, 9 and 12 months. In total, 322 TEE measurements were obtained. The LMS method with maximum penalized likelihood was used to construct the centile reference charts. Centiles were constructed for TEE expressed as MJ/day and also expressed relative to body weight (BW) and fat-free mass (FFM). Results: TEE increased with age and was 1.40,1.86, 2.64, 3.07 and 3.65 MJ/day at 1.5, 3, 6, 9 and 12 months, respectively. The standard deviations were 0.43, 0.47, 0.52, 0.66 and 0.88, respectively. TEE in MJ/kg increased from 0.29 to 0.36 and in MJ/day/kg FFM from 0.36 to 0.48. Conclusions: We have presented centile reference charts for TEE expressed as MJ/day and expressed relative to BW and FFM in infants across the first year of life. There was a wide variation or biological scatter in TEE values seen at all ages. We suggest that these centile charts may be used to assess and possibly quantify abnormal energy metabolism in disease states in infants.
Resumo:
In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Resumo:
Background: Although excessive ethanol consumption is known to lead to a variety of adverse effects in the heart, the molecular mechanisms of such effects have remained poorly defined. We hypothesized that posttranslational covalent binding of reactive molecular species to proteins occurs in the heart in response to acute ethanol exposure. Methods: The generation of protein adducts with several aldehydic species was examined by using monospecific antibodies against adducts with malondialdehyde (MDA), acetaldehyde (AA), MDA-AA hybrids, and hydroxyethyl radicals. Specimens of heart tissue were obtained from rats after intraperitoneal injections with alcohol (75 mmol/kg body weight) with or without pretreatment with cyanamide (0.05 mmol/kg body weight), an aldehyde dehydrogenase inhibitor. Results: The amounts of MDA and unreduced AA adducts were found to be significantly increased in the heart of the rats treated with ethanol, cyanamide, or both, whereas no other adducts were detected in statistically significant quantities. Immunohistochemical studies for characterization of adduct distribution revealed sarcolemmal adducts of both MDA and AA in the rats treated with ethanol and cyanamide in addition to intracellular adducts, which were also present in the group treated with ethanol alone. Conclusions: These findings support the role of enhanced lipid peroxidation and the generation of protein-aldehyde condensates in vivo as a result of excessive ethanol intake. These findings may have implications in the molecular mechanisms of cardiac dysfunction in alcoholics.