934 resultados para Biology, Neuroscience|Biology, Physiology
Resumo:
1. This paper examines the interaction between the wood mouse, Apodemus sylvaticus L., and the intestinal nematode, Heligmosomoides polygyrus Dujardin, using data collected at Tollymore Park Forest, Co. Down, Northern Ireland, between November 1978 and July 1981.
Re-exploration of the PHCCC Scaffold: Discovery of Improved Positive Allosteric Modulators of mGluR4
Resumo:
This paper describes a detailed structure activity relationship (SAR) analysis of the metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator, (-)-N-phenyl-7-(hydroxyimino)cyclopropa[b]-chromen-la-carboxamide (PHCCC). We have now developed compounds with improved potency and efficacy; in addition, compounds are presented that show selectivity for mGluR4 versus the other mGluR subtypes.
Resumo:
Type I galactosemia results from reduced galactose 1-phosphate uridylyltransferase (GALT) activity. Signs of disease include damage to the eyes, brain, liver, and ovaries. However, the exact nature and severity of the pathology depends on the mutation(s) in the patient's genes and his/her environment. Considerable enzymological and structural knowledge has been accumulated and this provides a basis to explain, at a biochemical level, impairment in the enzyme in the more than 230 disease-associated variants, which have been described. The most common variant, Q188R, occurs close to the active site and the dimer interface. The substitution probably disrupts both UDP-sugar binding and homodimer stability. Other alterations, for example K285N, occur close to the surface of the enzyme and most likely affect the folding and stability of the enzyme. There are a number of unanswered questions in the field, which require resolution. These include the possibility that the main enzymes of galactose metabolism form a supramolecular complex and the need for a high resolution crystal structure of human GALT. (C) 2011 IUBMB IUBMB Life, 63(11): 949-954, 2011
Resumo:
Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components. there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes an FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
Chemotherapy response rates for advanced colorectal cancer remain disappointingly low, primarily because of drug resistance, so there is an urgent need to improve current treatment strategies. To identify novel determinants of resistance to the clinically relevant drugs 5-fluorouracil (5-FU) and SN38 (the active metabolite of irinotecan), transcriptional profiling experiments were carried out on pretreatment metastatic colorectal cancer biopsies and HCT116 parental and chemotherapy-resistant cell line models using a disease-specific DNA microarray. To enrich for potential chemoresistance-determining genes, an unsupervised bioinformatics approach was used, and 50 genes were selected and then functionally assessed using custom-designed short interfering RNA(siRNA) screens. In the primary siRNA screen, silencing of 21 genes sensitized HCT116 cells to either 5-FU or SN38 treatment. Three genes (RAPGEF2, PTRF, and SART1) were selected for further analysis in a panel of 5 colorectal cancer cell lines. Silencing SART1 sensitized all 5 cell lines to 5-FU treatment and 4/5 cell lines to SN38 treatment. However, silencing of RAPGEF2 or PTRF had no significant effect on 5-FU or SN38 sensitivity in the wider cell line panel. Further functional analysis of SART1 showed that its silencing induced apoptosis that was caspase-8 dependent. Furthermore, silencing of SART1 led to a downregulation of the caspase-8 inhibitor, c-FLIP, which we have previously shown is a key determinant of drug resistance in colorectal cancer. This study shows the power of systems biology approaches for identifying novel genes that regulate drug resistance and identifies SART1 as a previously unidentified regulator of c-FLIP and drug-induced activation of caspase-8. Mol Cancer Ther; 11(1); 119-31. (C) 2011 AACR.
Resumo:
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Resumo:
This short review establishes the conceptual bases and discusses the principal aspects of P4-shorthand for predictive, preventive, personalized and participatory medicine-medicine, in the framework of infectious diseases. P4 medicine is a new way to approach medical care; instead of acting when the patient is sick, physicians will be able to detect early warnings of disease to take early action. Furthermore, people might even be able to adjust their lifestyles to prevent disease. P4 medicine is fuelled by systems approaches to disease, including methods for personalized genome sequencing and new computational techniques for building dynamic disease predictive networks from massive amounts of data from a variety of OMICs. An excellent example of the effectiveness of the P4 medicine approach is the change in cancer treatments. Emphasis is placed on early detection, followed by genotyping of the patient to use the most adequate treatment according to the genetic background. Cardiovascular diseases and perhaps even neurodegenerative disorders will be the next targets for P4 medicine. The application of P4 medicine to infectious diseases is still in its infancy, but is a promising field that will provide much benefit to both the patients and the health-care system.