1000 resultados para Baikal Drilling Project


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleocene benthic and planktonic foraminifers occur throughout a long interval of the sedimentary succession cored at Site 605. A biostratigraphic zonation based on planktonic foraminifers is proposed for this Paleocene section. Zones identified are Subbotina pseudobulloides Zone, Morozovella trinidadensis Zone, M. uncinata Zone, M. pusilla pusilla Zone, Planorotalites pseudomenardii Zone, and M. velascoensis Zone. Fluctuations in the sedimentation rate occurred at Site 605. Rates of deposition were high during the M. pusilla pusilla and P. pseudomenardii zones, and a depositional hiatus may occur at the base of the M. velascoensis Zone. Qualitative and quantitative analysis of benthic foraminiferal assemblages suggests that the Paleocene sediments of Site 605 were deposited near the upper limit of Nuttallides truempyi, that is, approximately in the middle bathyal zone (600 m or more).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new planktic foraminiferal zonal scheme is presented for subdivision of Upper Cretaceous pelagic carbonate sequences in the circum-Antarctic region. Definition of the zones and subzones is based study of foraminifera from 13 deep-sea sections that were poleward of 50 °S paleolatitude and within the Austral Biogeographic Realm during Late Cretaceous time. The proposed biostratigraphic scheme includes seven Upper Cretaceous zones, with an average stratigraphic resolution of 4.4 m.y., and six subzones, which are all within the Maastrichtian Stage, with an average stratigraphic resolution of 1.4 m.y. The considerably higher resolution in the Maastrichtian Stage is a result of good foraminiferal preservation, availability of high quality magnetostratigraphic sections, and complete composite stratigraphic recovery in the Atlantic and Indian Ocean sectors of the Antarctic Ocean. Diminished resolution in the pre-Maastrichtian sediments of southern high latitude sections results from: (1) incomplete recovery of the middle Campanian, lower Santonian and most of the Cenomanian-lower Coniacian intervals, (2) presence of local and regional hiatuses, (3) paleobathymetric shallowing with increasing age at some sites, resulting in impoverished older planktic assemblages, and (4) poorer preservation with increasing burial depth. Cross-latitude correlation of the Campanian and older austral sequences may be improved with future drilling by recovery of sections that span existing stratigraphic gaps. Correlation of high latitude bioevents with chemostratigraphic events and their intercalibration with the magnetostratigraphy and the Geomagnetic Polarity Time Scale are needed for better chronostratigraphic resolution in existing high latitude sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quaternary sediments were recovered at all four Sites at Leg 72. Planktonic foraminifers were abundant and well preserved, especially in the holes shielded from Antarctic Bottom Water (AABW) influence. The fauna belonged to the subtropical province marked by Globigerinoides ruber and to a lesser extent by Globorotalia inflata. Thirty planktonic foraminiferal species were distinguished, and a detailed study of the Site 517 stratigraphy was made. The Quaternary sequence of the Rio Grande Rise was subdivided slightly differently from the Bolli and Premoli Silva (1973) pattern. Five subzones were identified but some difficulties arose when a precise correlation became necessary in the subzones of the tropical provinces. Correlations could nevertheless be made, particularly with respect to the earliest Quaternary. Quaternary faunal data have been dated by isotopic stratigraphy (Vergnaud Grazzini et al.,1983) and partially contradict results previously published for this part of the Atlantic (Williams and Ledbetter, 1979). By studying the occurrence of planktonic foraminifers, we obtained more information about hydrologic variations during the Quaternary sequence of Hole 517; two broad periods were recognized. Finally, we identified the interaction between the Brazil Current and the subtropical convergence

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 105, a thick sequence of lower Eocene to lower Oligocene sediments was recovered from Hole 647A in the southern Labrador Sea. These sediments contain diverse, well-preserved, high-latitude calcareous nannofossil flora. The nannofossil biostratigraphy of the hole indicates the presence of a minor hiatus between Zones NP 16 and NP 17 in the upper middle Eocene and a barren interval separating Zones NP 13 and NP 15. Species abundance is highest within the lower to middle Eocene and starts to decline near the base of the upper Eocene. No major change in the nannoflora was observed across the Eocene/Oligocene boundary, although a slight decrease in species abundance was recorded. The Paleogene calcareous nannofossils of nearby DSDP Site 112 were reexamined and compared with those of Site 647. Several cores were reassigned to different nannofossil zones. The calcareous nannoflora are dominated by high-latitude indicative species and also exhibit a high diversity, which suggests the influence of more temperate water masses in this region during Eocene and Oligocene time. One new subspecies from the middle Eocene, Sphenolithus furcatolithoides labradorensis, is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin but discrete pelagic limestone beds intercalated among the black mudstones near the top of the extensive Mesozoic black shale sequence of the Falkland Plateau are reminiscent of similar occurrences in the central and North Atlantic and may be cyclic in nature. They have been studied via carbonate, organic carbon, stable isotope, nannofloral, and ultrastructural analysis in an attempt to determine their mode of origin. Nannofossil diversity and preservation suggest that selective dissolution or diagenesis did not produce the interbedded coccolith-rich and coccolith-poor layers, nor did blooms of opportunistic species play a role. Stable isotope measurements of carbonate do not adequately constrain the origin of the cyclicity; however, the d13C data suggest that the more nannofossil-rich intervals may be due to higher nutrient supply and overturn of deeper waters at the site rather than influxes of well-oxygenated waters into an otherwise anoxic environment. Such an explanation is in accord with the nannofloral evidence

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÆ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb < 1 ppm; Zr = 44 ± 7 ppm; Rb < 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.