774 resultados para Arts Assessment, Dance, ePortfolio, Digital Portfolios, Authentic Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genesis of this innovation lies in the commitment of a national Irish business enterprise to the professional development of its staff in general, and to the enhancement of its Information Technologies (IT) staff specifically, in collaboration with a national Higher Education (HE) provider. A postgraduate degree, awarded by the HE provider, seeks to bring coherence and cohesion to the education and training provision for newly recruited IT graduate staff of the business enterprise, simultaneously acting both as an induction process for new staff and as a professional capacity building exercise, thereby enhancing the enterprise’s organisational learning and collective competence in the areas of information technologies, IT security and technical service management. The curriculum was designed by the HE provider in collaboration with the business enterprise to offer it to circa sixteen IT staff per cycle of delivery through a model known generally as the new apprenticeship for professional practice which uses a combination of college-based, block release taught elements, regular day release seminars and substantial work-based learning, supported by the academic staff of the HE provider and work-based support staff/mentors of the business enterprise. Academic quality assurance, pedagogical, assessment and accreditation responsibilities remain with the HE provider. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’assoliment de l’Espai Europeu d’Educació Superior implica nous rols per a professors i alumnes i la introducció de noves metodologies docents. En aquest article es presenta una experiència d’innovació en la docència de la Psicologia consistent en l’assaig de la tècnica de treball cooperatiu del trencaclosques. Aquesta tècnica s’ha aplicat en una classe de teoria de l’assignatura troncal i anual “Avaluació Psicològica” de segon curs de la llicenciatura de Psicologia. S’exposa el procediment i s’analitzen els pros i els contres de l’ús d’aquesta metodologia segons la perspectiva de la professora i segons el punt de vista dels alumnes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo principal de este estudio es conocer la concordancia entre informantes, padres y maestros, en cada una de las dimensiones o categorías diagnósticas del Early Childhood Inventory-4 (ECI-4). Además, se pretende analizar la influencia de la presencia de problemas de salud en los padres en la descripción y valoración de la conducta de una muestra de 204 alumnos de preescolar (3 a 6 años) de perfiles socioeconómicos diferentes. Los resultados indican que los padres tienden a valorar con mayor severidad los síntomas, observándose una mayor concordancia entre informantes en los relativos a los trastornos del desarrollo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este estudio es la evaluación de la ideación suicida infantil y su severidad a partir de la información proporcionada por el propio niño. Para ello se ha aplicado el Children’s Depression Inventory a una muestra representativa de 361 escolares de edades comprendidas entre los 8 y 12 años. Un mes más tarde se ha verificado la persistencia de los deseos de morir mediante la Children’s Depression Rating Scale-Revised. Se evalúa la severidad de la ideación suicida autoinformada con relación a la persistencia, la alteración del estado de ánimo y el conocimiento intelectual de la muerte. Los resultados indican que la persistencia de la intencionalidad suicida esta asociada a una mayor sintomatología depresiva

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning contents adaptation has been a subject of interest in the research area of the adaptive hypermedia systems. Defining which variables and which standards can be considered to model adaptive content delivery processes is one of the main challenges in pedagogical design over e-learning environments. In this paper some specifications, architectures and technologies that can be used in contents adaptation processes considering characteristics of the context are described and a proposal to integrate some of these characteristics in the design of units of learning using adaptation conditions in a structure of IMS-Learning Design (IMS-LD) is presented. The key contribution of this work is the generation of instructional designs considering the context, which can be used in Learning Management Systems (LMSs) and diverse mobile devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student