910 resultados para Architecture for the physically handicapped
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
In the early nineties, Mark Weiser wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. According to Weiser, computers require too much attention from the user, drawing his focus from the tasks at hand. Instead of being the centre of attention, computers should be so natural that they would vanish into the human environment. Computers become not only truly pervasive but also effectively invisible and unobtrusive to the user. This requires not only for smaller, cheaper and low power consumption computers, but also for equally convenient display solutions that can be harmoniously integrated into our surroundings. With the advent of Printed Electronics, new ways to link the physical and the digital worlds became available. By combining common printing techniques such as inkjet printing with electro-optical functional inks, it is starting to be possible not only to mass-produce extremely thin, flexible and cost effective electronic circuits but also to introduce electronic functionalities into products where it was previously unavailable. Indeed, Printed Electronics is enabling the creation of novel sensing and display elements for interactive devices, free of form factor. At the same time, the rise in the availability and affordability of digital fabrication technologies, namely of 3D printers, to the average consumer is fostering a new industrial (digital) revolution and the democratisation of innovation. Nowadays, end-users are already able to custom design and manufacture on demand their own physical products, according to their own needs. In the future, they will be able to fabricate interactive digital devices with user-specific form and functionality from the comfort of their homes. This thesis explores how task-specific, low computation, interactive devices capable of presenting dynamic visual information can be created using Printed Electronics technologies, whilst following an approach based on the ideals behind Personal Fabrication. Focus is given on the use of printed electrochromic displays as a medium for delivering dynamic digital information. According to the architecture of the displays, several approaches are highlighted and categorised. Furthermore, a pictorial computation model based on extended cellular automata principles is used to programme dynamic simulation models into matrix-based electrochromic displays. Envisaged applications include the modelling of physical, chemical, biological, and environmental phenomena.
Resumo:
Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores
Resumo:
Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.
Resumo:
Dissertação de mestrado em Engenharia de Telecomunicações e Informática
Resumo:
Early loss of splenic Tfh cells in SIV-infected rhesus macaques
Resumo:
Dissertação de mestrado integrado em Arquitetura (área de especialização em Cultura Arquitetónica)
Resumo:
In recent decades the vernacular architecture has been recognized as an important source of knowledge in the adaptation of construction to the climate and other specific local characteristics. However, the systematized information is still scarce to quantitatively understand the hydrothermal behaviour of bioclimatic strategies identified in previous surveys to this type of architecture. Using the farmsteads in the northeast region of Portugal as a case study, this article presents the results of hygrothermal monitoring carried out during the heating and cooling seasons. The data obtained enabled to verify and quantify the effective performance of the identified bioclimatic strategies, which are presented as opportunities for contemporary architecture.
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado em Arqueologia
Resumo:
Tese de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Arquitectura Área de Especialização: Construção e Tecnologia
Resumo:
Relatório de estágio de mestrado em Arqueologia
Resumo:
Teses de Doutoramento em Arquitectura.