848 resultados para Anwendung
Resumo:
Zur administrativen Unterstützung von Lehr- und Lernprozessen werden E-Learning-Plattformen eingesetzt, die auf der Grundlage des Internet Funktionen zur Distribution von Lehr- und Lernmaterialien und zur Kommunikation zwischen Lehrenden und Lernenden anbieten. Zahlreiche wissenschaftliche Beiträge und Marktstudien beschäftigen sich mit der multikriteriellen Evaluation dieser Softwareprodukte zur informatorischen Fundierung strategischer Investitionsentscheidungen. Demgegenüber werden Instrumente zum kostenorientierten Controlling von E-Learning-Plattformen allenfalls marginal thematisiert. Dieser Beitrag greift daher das Konzept der Total Cost of Ownership (TCO) auf, das einen methodischen Ansatzpunkt zur Schaffung von Kostentransparenz von E-Learning-Plattformen bildet. Aufbauend auf den konzeptionellen Grundlagen werden Problembereiche und Anwendungspotenziale für das kostenorientierte Controlling von LMS identifiziert. Zur softwaregestützten Konstruktion und Analyse von TCO-Modellen wird das Open Source-Werkzeug TCO-Tool eingeführt und seine Anwendung anhand eines synthetischen Fallbeispiels erörtert. Abschließend erfolgt die Identifikation weiterführender Entwicklungsperspektiven des TCO-Konzepts im Kontext des E-Learning. Die dargestellte Thematik ist nicht nur von theoretischem Interesse, sondern adressiert auch den steigenden Bedarf von Akteuren aus der Bildungspraxis nach Instrumenten zur informatorischen Fundierung von Investitions- und Desinvestitionsentscheidungen im Umfeld des E-Learning.
Resumo:
Die Radio Frequenz Identifikation (RFID) gilt als wichtigste technologische Neuerung in der Informationslogistik. Wird RFID in der produzierenden Industrie hauptsächlich zur Betriebsdaten-erfassung und im Handel zur Wareneingangs-/ Warenausgangskontrolle verwendet, so können ins-besondere in der Pharmazeutischen Industrie die Vorteile der Technologie voll ausgereizt werden. Die wohl wichtigste Anwendung ist die lückenlose Rückverfolgung entlang der Lieferkette, wie sie in den USA bereits in einigen Staaten für alle pharmazeutischen Produkte vorgeschrieben und auch in Deutschland für bestimmte Produkte erforderlich ist. Zudem können die RFID Transponder auf der Produktver-packung als fälschungssicheres Merkmal eingesetzt werden. Bei temperatursensiblen Produkten können Transponder mit zusätzlicher Sensorik zur Überwachung der Kühlkette dienen. Gleichzeitig kann der Transponder auch als Diebstahlsicherung im innerbetrieblichen Bereich sowie auch im Handel dienen und ermöglicht dabei eine höhere Sicherheit als die bisher eingesetzten 1-Bit Transponder. Die Trans-pondertechnologie kann außerdem den Barcode ganz oder teilweise ersetzen und so einen großen Beitrag zur Prozessautomatisierung leisten.
Resumo:
Zahnriemenfördersysteme haben auf Grund ihrer wirtschaftlichen und technischen Vorteile beim Transport von Stückgütern ein breites Anwendungsfeld in den unterschiedlichen Bereichen der Industrie gefunden und gewinnen weiterhin an Bedeutung. Die Auslegung der Systeme beschränkt sich gegenwärtig im Wesentlichen auf die Zugstrang- und die Zahnfußfestigkeit des Zahnriemens. Grundlagen der Berechnungen sind oft recht vage Aussagen zur Höhe des Reibwertes zwischen dem Zahnriemen und dessen Stützschiene. Die Erhöhung der Kontakttemperatur durch die eingebrachte Reibleistung wird meist völlig vernachlässigt. In der Praxis wird oftmals auf Erfahrungswerte zurückgegriffen, wobei die Gefahr der Über- bzw. Unterdimensionierung mit erheblichen Auswirkungen auf die Lebensdauer, das Verschleißverhalten und die Betriebssicherheit besteht. 1. Anwendung von Zahnriemenförderern Das Einsatzgebiet der Zahnriemen ist neben der Antriebstechnik in zunehmendem Maße die Fördertechnik, wo diese als Zug- und Tragmittel für den Stückguttransport zur Anwendung kommen. Der Grund dieser Entwicklung lässt sich mit den günstigen Eigenschaften dieser Maschinenelemente erklären. Besonders zu erwähnen sind dabei der geräuscharme Lauf, die geringe Masse und die niedrigen Kosten in Anschaffung und Wartung. Der synchrone Lauf, der mit Zahnriemen wie auch mit Förderketten realisierbar ist, ist ein weiterer wesentlicher Vorteil. Dabei übernehmen die robusten Förderketten den Bereich der Fördertechnik, in dem große Kräfte übertragen werden müssen und stark schmutzintensive Umgebungsbedingungen vorherrschen. Haupteinsatzgebiete der Zahnriemenförderer ist der Bereich der empfindlicheren Güter mit relativ geringen Massen, wobei sich immer mehr abzeichnet, dass auch Einsatzgebiete mit schweren Werkzeugträgern erschlossen werden. Die Transportzahnriemen müssen bei dem Einsatz zahnseitig abgestützt werden, um die Gutmasse aufnehmen zu können. Stückgüter können von Zahnriemen durch Kraft- oder Formschluss transportiert werden. Der Einsatz ist von den technologischen Erfordernissen und der Art des Transportgutes abhängig. Formschluss wird meist über aufgeschweißte Formelemente / Mitnehmer realisiert. Diese Art des Transportes wird verwendet, wenn Teile: • vereinzelt, • genau positioniert, ������ zeitlich exakt getaktet, • über starke Steigungen bis hin zum vertikalen transportiert werden müssen, • bzw. sich gegenseitig nicht berühren dürfen. Abbildung 1: Formschlüssiger Transport mit aufgeschweißten Formelementen Die Art und die Form des auf dem Zahnriemenrücken aufgebrachten Formelementes werden vom Gut selbst und dem Einsatzzweck bestimmt. Eine Vielzahl von verschiedenen Elementen wird von der Industrie standardmäßig angeboten. Bei der kraftschlüssigen Variante können zwei grundlegende Arten unterschieden werden: Zum einen Zahnriemenbeschichtungen mit sehr hohem Reibwert, zum anderen mit sehr niedrigen Reibwerten. Beschichtungen mit sehr hohem Reibwert (z. B. Silikon, PUR-Schaum, Naturkautschuk) eignen sich besonders für Schrägförderer und Abzugsbänder sowie für einfache Positionieraufgaben. Dabei wird eine relative Verschiebung des Gutes zum Zahnriemen durch den hohen Reibwert in der Kontaktzone behindert. Abbildung 2: Abzugsband für biegeschlaffe Flachformkörper z. B. Folie, Textilien Zahnriemenrückenbeschichtungen mit geringen Reibwerten bestehen meist aus Polyamidgewebe und eignen sich besonders gut für den Staubetrieb. Hierbei dient der Zahnriemen selbst als Zwischenspeicher. Bei Bedarf können die Güter freigegeben werden. Dabei muss aber sichergestellt werden, dass auch die Auflagefläche des Fördergutes für einen solchen Einsatzzweck geeignet ist, da es zu einer Relativbewegung zwischen Gut und undZahnriemen kommt. Abbildung 3: Stauförderer Parallelförderer können sowohl als reibschlüssige als auch als formschlüssige Variante ausgeführt werden. Ihr Vorteil liegt darin, dass größere Güter, z. B. Flachglas, Bleche usw. auf zwei oder mehreren Riemen aufliegen und durch die gleiche Geschwindigkeit der synchron angetriebenen Riemen keine Verschiebung des Gutes erfolgt. Würde der Antrieb nicht über Zahnriemen erfolgen, sondern über Flachriemen bzw. Gurte, wäre außerdem ein Zugmittel in der Breite des Fördergutes notwendig. Daraus ergibt sich zusätzlich eine wesentliche Massereduzierung der Zugmittel für den Stückguttransport in der Fördertechnik. Abbildung 4: Parallelförderer für kraftschlüssigen Transport Allen diesen Varianten ist jedoch gemein, dass der Zahnriemen auf einer Stützschiene gleitet und die Normalkraft des Transportgutes in Verbindung mit Riemengeschwindigkeit und Reibwert eine Reibleistung und damit Wärme erzeugt. Zum gegenwärtigen Zeitpunkt fehlen exakte Angaben zu den Reibwerten für die einzelnen Gleitpaarungen. Auch ist eine Veränderung dieser Reibwerte bei Geschwindigkeits-, Temperatur-, und Belastungsänderung ungeklärt. Des Weiteren ist es auch notwendig, die Belastungsgrenzen für die Auslegung von Zahnriemenförderern zu definieren und das Verschleißverhalten zu kennen. Die derzeit üblichen Auslegungskriterien für diese fördertechnischen Anlagen sind Zugstrangfestigkeit und Zahnfußfestigkeit. Dabei bleibt jedoch die Erwärmung des Zugmittels und der Stützschiene durch die eingebrachte Reibleistung und den sich ändernden Reibwert unbeachtet. Insbesondere bei kurzen Förderstrecken mit großen Lasten bzw. hohen Transportgeschwindigkeiten ist die Gefahr von thermischen Überlastungen gegeben, welche zu erhöhtem Verschleiß bzw. zum Totalausfall der Anlage führen kann. Soll dieses zusätzliche Auslegungskriterium angewandt werden, sind Erkenntnisse aus den Gebieten der Tribologie und der Wärmelehre/Thermodynamik anzuwenden. Zum einen ist eine Bestimmung der entstehenden Reibleistung notwendig und zum anderen der abgeführte Wärmestrom zu ermitteln. Die sehr komplexen Zusammenhänge werden durch konstruktive und technologische Größen beschrieben, welche sich wiederum gegenseitig beeinflussen. 2. Reibwerte in der Gleitpaarung In DIN ISO 7148-2 sind die Besonderheiten bei der tribologischen Prüfung von polymeren Werkstoffen beschrieben. Dabei wird explizit darauf hingewiesen, dass die Prüfanordnung möglichst der praktischen Anwendung entsprechen sollte, um die Übertragbarkeit der Prüfergebnisse zu gewährleisten. Deshalb wurde ein Versuchsstand konzipiert, der die Kontaktverhältnisse von Zahnriemen und Stützschienen möglichst real abbildet (Abb.5). Abbildung 5: Schematischer Aufbau des Versuchsstandes Für die Untersuchung der Zahnriemenpaarung wird der Zahnriemen mit der Zahnseite nach oben aufgespannt. Auf die nach oben zeigende Zahnseite wird eine planparallele Platte des jeweiligen Gleitschienenmaterials aufgelegt. Die Flächenpressung der Paarung lässt sich über aufgebrachte Massestücke variieren und die Reibkraft über den Kraftsensor direkt über eine Schnittstelle zur Aufzeichnung an einen Rechner weiterleiten. Zur Ermittlung der Kontakttemperaturen wurden Bohrungen in das Gleitschienenmaterial eingebracht, die unmittelbar bis an die Oberfläche der Kontaktfläche reichen und mit Thermoelementen bestückt sind. Die Abstützung des Zahnriemens erfolgt auf einem Flachriemen, der wiederum auf einer Rollenbahn abrollt. Dadurch wird ein zusätzlicher Wärmeeintrag durch eine gleitende Abstützung vermieden. Die Gleitgeschwindigkeit und Flächenpressung auf die Paarung werden in Stufen variiert. Als Versuchszahnriemen dienten PU-Riemen mit und ohne zahnseitiger Polyamidbeschichtung der Abmessung 1250 x 25 T10. Abbildung 6: Reibwertmessungen an PU-Zahnriemen ohne Beschichtung (Kurzzeitversuche) Die ermittelten Messwerte der Gleitreibungszahl µ für verschiedene PU-Zahnriemen – Stützschienenkombinationen sind in Abbildung 6 dargestellt. Die schraffierten Balken geben die Reibungszahlempfehlungen von Herstellern sowie aus Literaturquellen für diese Paarungen wieder. Oft wird jedoch darauf hingewiesen, dass für einen konkreten Anwendungsfall eigene Untersuchungen durchzuführen sind. Die grauen Balken geben die bei einer Versuchsdauer von bis zu 8 Stunden ermittelten Reibungszahlen wieder. Dabei wurden sowohl die Flächenpressungen als auch die Gleitgeschwindigkeiten variiert. Bei einigen Paarungen (Holz (Abb.7)) konnte ein sehr starker abrasiver Verschleiß am Zahnriemen festgestellt werden. Diese Werkstoffkombinationen sind nur für geringe Belastungen geeignet. Abbildung 7: Oberfläche PU-Zahnriemen, verschlissen an Schichtholz Die Paarungen in Verbindung mit Stahl- bzw. Aluminiumstützschienen neigen zu stick-slip- Erscheinungen verbunden mit starker Geräuschentwicklung. Aufgrund der relativ hohen Reibungszahlen wurden keine Dauerversuche an unbeschichteten PU-Zahnriemen durchgeführt. Für die weiteren Untersuchungen wurden ausschließlich polyamidbeschichtete Zahnriemen verwendet. In Abbildung 8 werden die Ergebnisse der Reibwertuntersuchungen an PAZ-Zahnriemen (Polyamidgewebebeschichtung auf der Zahnseite) dargestellt. Die schraffierten Balken stellen wiederum die bisherigen Empfehlungen dar, die grauen Balken die ermittelten Messwerte im Kurzzeitversuch (bis 8 Stunden) und die schwarzen Balken die Messwerte im Langzeitversuch (zwischen 7 und teilweise bis zu 100 Tagen). Hier ist die Übereinstimmung der Reibungszahlen zwischen Empfehlungen und Kurzzeitmesswerten sehr gut. Der deutliche Anstieg der Werte im weiteren Verlauf der Untersuchungen deutet daraufhin, dass der tribologische Einlauf innerhalb von 8 Stunden meist noch nicht abgeschlossen ist und dass nach fortlaufender Belastung weitere tribologische Phänomene die Kontaktverhältnisse ändern. Abbildung 8: Reibungszahlen an polyamidbeschichteten PU-Zahnriemen (PAZ) in Verbindung mit verschiedenen Gleitschienen Bei den Paarungen mit einer Stützschiene aus Stahl, Aluminium oder Schichtholz konnte eine polymere Filmbildung auf der Gleitfläche beobachtet werden. In Abbildung 9 und 10 ist die Entwicklung am Beispiel von Stahlproben zu sehen. Gemeinsam bei diesen Paarungen ist die fortschreitende Schichtbildung, verbunden mit einer Reibwerterhöhung. Der Verschleiß der Gewebeschicht am Zahnriemen setzt bei größeren Reibungszahlen ein, was zu deren weiterer Erhöhung führt Ein weiterer Einsatz führt zur vollständigen Abtragung der Gewebeschicht und damit zu einer neuen tribologischen Paarung PU-Zahnriemen ��� Polymerschicht. Abbildung 9: beginnende polymere Ablagerung auf Stahlprobe Rz28 Abbildung 10: nahezu geschlossener polymerer Film auf Stahlprobe Rz28 Am Beispiel der Paarung PAZ Zahnriemen – Stahlstützschiene wird die Entwicklung der Reibungszahl über die Zeit des Gleitkontaktes in Abbildung 12 dargestellt. Dabei wurde die Oberflächenrauigkeit (Rz 6,3; Rz 28) durch entsprechende Bearbeitungen variiert. Der relativ starke Anstieg an der Paarung Rz 6,3 kann zum einen auf die hohe Gleitgeschwindigkeit und den damit entsprechend langen Gleitweg zurückgeführt werden, zum anderen auf den höheren adhäsiven Anteil durch die relativ glatte Oberfläche und der damit erhöhten Kontaktfläche. Abbildung 11 zeigt einen verschlissenen Zahnkopf. Abbildung 9: Verschlissene Zahnkopfflanke, PAZ - Stahl Abbildung 10: Änderung der Reibungszahl im zeitlichen Verlauf an der Paarung ZR PA – Stahl Die Erhöhung der Reibungszahlen an der Paarung PE UHMW - polyamidbeschichteter Zahnriemen kann nicht unmittelbar auf direkte Verschleißerscheinungen zurückgeführt werden. Sowohl die Gleitfläche als auch der Zahnriemen weisen auch nach längerem Kontakt keine sichtbaren Schäden auf: Es bildet sich kein polymerer Film auf der PE- UHMW- Gleitfläche heraus. In Abbildung 11 wird die Änderung der Reibungszahl dargestellt. Es wurden Paarungen mit steigendem p•v-Wert gewählt. Mit höheren Werten für die eingebrachte Leistung pro Flächeneinheit ist ein schnellerer Anstieg der Reibungszahlen zu verzeichnen. Abbildung 11: Änderung der Reibungszahl im zeitlichen Verlauf an der Paarung ZR PAZ – PE UHMW Die Erhöhung der Reibwerte zieht nicht nur eine Steigerung der Antriebsleistung nach sich, sondern auch eine Zunahme der Reibleistung und damit einen Anstieg der Kontakttemperatur. Hat diese einen bestimmten Wert erreicht, kommt es zum Aufschmelzen der Gleitflächen und damit zum Totalausfall der Paarung (Abbildungen 14, 15, 16). Ebenfalls tritt durch die Reibwerterhöhung eine höhere Belastung des Zugstranges und der Zahnfüße im Einlauf des Zahnriemens auf. Für eine konstruktive Auslegung entsprechender Zahnriemenförderer ist dies durch entsprechende Sicherheitsfaktoren zu berücksichtigen. Abbildung 12: Aufgeschmolzene PE-Laufschiene, 2-fach vergrößert Abbildung 13: geschmolzene Faserbündel 20- fach Abbildung 14: zerstörtes Gewebe in Folge thermischer Überlastung 3. Thermische Zusammenhänge Die Temperaturerhöhung in der Wirkstelle zwischen Zahnriemen und Stützschiene kann im stationären Zustand in der vereinfachten Form: p Flächenpressung v Gleitgeschwindigkeit µ Reibungszahl A Kontaktfläche / jeweilige Oberfläche a Wärmeübergangskoeffizient l Wärmeleitwert Abbildung 15: Kontaktmodell dargestellt werden. Dabei werden verschiedene Vereinfachungen angenommen: • Reibleistung wird auf die gesamte Fläche gleichmäßig verteilt, • Wärmestrom erfolgt nur in Normalenrichtung zur Gleitfläche, • konstante Reibleistung über die gesamte Zeit, • keine Ableitung des Wärmestromes über Stirn- und Seitenflächen, • eingeschwungener Gleichgewichtszustand der Temperaturverteilung, • gleiche Temperatur über der jeweiligen Oberfläche, • gleiche Strömungsverhältnisse und -bedingungen an der jeweiligen Oberfläche, • konstante - und - Werte über der gesamten Fläche. Der Temperaturverlauf für verschiedene Materialpaarungen ist in Abbildung 16 dargestellt. Der unterschiedliche Verlauf der Kurven kann mit den verschiedenen eingebrachten Reibleistungen durch sich unterschiedlich einstellende Reibungszahlen und durch die unterschiedlichen Wärmeleitwerte und Wärmekapazitäten der Gleitschienen erklärt werden. Ist eine stationäre Temperatur erreicht, so gilt vereinfacht die Vorstellung von Abbildung 15. Abbildung 16: thermischer Einlauf verschiedener Stützschienenmaterialien Die sich einstellende Gleitflächentemperatur ist im Wesentlichen von den in Abbildung 17 dargestellten Einflüssen abhängig. Da die Kontakttemperatur die Grenztemperatur (ca. 65°C) nicht überschreiten darf, um eine thermische Schädigung zu vermeiden, sind die entsprechenden Einflussgrößen zweckmäßig zu wählen. Die Parameter Gleitgeschwindigkeit und Flächenpressung sind meist durch die technologischen Erfordernisse vorgegeben, die Reibungszahl stellt sich entsprechend der tribologischen Paarung ein und die Wärmeleitfähigkeit ist ein kaum zu verändernder Stoffwert. Die Einflussmaßnahmen erstrecken sich also meist auf die Schichtstärke s der Abstützung und den Wärmeübergang zur Umgebung. Abbildung 17: Technologische und konstruktive Einflüsse auf die Gleitflächentemperatur in der Wirkstelle 4. Zusammenfassung Die Kenntnis der sich nach einer entsprechenden Einlaufphase einstellenden Reibungszahlen für verschiedene Zahnriemen – Stützschienenkombinationen ist für die Anwender und Entwickler wichtig, da damit eine optimale Auslegung von Zahnriemenförderern erfolgen kann. Diese optimale Auslegung realisiert dann in der Anwendung eine ökonomische Lebensdauer bei verbesserter konstruktiver Auslegung. Die bisher weitgehend unbeachtete Temperaturerhöhung in der Gleitschienen – Zahnriemenkombination durch die eingebrachte Reibleistung sollte zukünftig ein weiteres Auslegungskriterium darstellen. Eine erste Annäherung an dieses Problem kann durch die Form: p Flächenpressung v Gleitgeschwindigkeit µ Reibungszahl A Kontaktfläche / jeweilige Oberfläche K Wärmeabgabekoeffizient DT max. zul. Temperaturerhöhung K= f (µ, p, v, Gleitschienenmaterial, Zahnriemenausführung, Maschinenkonstante…) gezeigt werden. Für die Ermittlung des Wärmeabgabekoeffizienten sind entsprechende Untersuchungen durchzuführen und Zusammenhänge zu ermitteln. Bestimmte Praxiseinflüsse (Umgebungstemperaturschwankungen, Verschmutzung, Stöße, Montagefehler) sind in die bisherigen Untersuchungen noch nicht eingeflossen, sollten aber nicht unbeachtet bleiben. Durch eine vorteilhafte Auslegung der Förderanlagen kann eine höhere Zuverlässigkeit bei geringeren Wechselintervallen und niedrigeren Kosten für den Betrieb erreicht werden.
Resumo:
Radio Frequency Identification (RFID) beeinflusst unbestritten zahlreiche Anwendungsgebiete und schafft die Grundlage für die zukünftige Entwicklung logistischer Systeme. Von besonderer Bedeutung ist in diesem Zusammenhang die systematische Identifikation von Einsatzpotenzialen für diese Technologie. Bislang existiert hierfür noch keine allgemein verbreitete Methodik. Diese Problematik greift der folgende Beitrag auf und zeigt, wie aus den technischen Grundlagen und analysierten Praxisanwendungen Identifikationskriterien abgeleitet werden können. Die so erarbeiteten Kriterien werden in ihrer Anwendung anhand eines fiktiven Beispiels erläutert und damit exemplarisch eine mögliche Analysemethodik vorgestellt. 1. Einleitung Die produktionswirtschaftlichen Anforderungen an die Unternehmen sind zunehmend geprägt durch Globalisierung und damit durch eine zunehmende Komplexität sowie vertiefte Arbeitsteiligkeit. Es entsteht eine zunehmend breitere Streuung der Fertigungsstandorte und Kooperationsbeziehungen. Es gibt letztlich mehr Lager- und Umschlagprozesse in der Lieferkette. Andererseits bringt der erhöhte Qualitäts- und Kostendruck steigende Fixkosten mit sich, er zwingt zur ständigen Rationalisierung der Materialwirtschaft. Es besteht der Zwang zum Einsatz neuer technisch-elektronischer Mittel zur Kontrolle und Steuerung der logistischen Ketten. Im Lager bedeutet das eine zunehmende Nutzung der Informations- und Kommunikationstechnik zur Lager- und Fertigungssteuerung, auch in Verbindung mit Forderungen der Rückverfolgbarkeit der Produkte. An die Logistikleistungen werden damit Anforderungen wie Schnelligkeit, Qualität und Kostenminimierung gestellt. Letztlich bestehen die Warenbereitstellungs- und Verteilsysteme aus der technischen Grundstruktur, dem Lagertyp und dessen Geometrie sowie der dabei einsetzbaren Bedientechnik und deren kinematischen Daten. Der organisatorische Rahmen dieser Systeme ist gekennzeichnet durch die Nutzung diverser Ein- und Auslagerstrategien, die auch wesentlich Kosten und Leistungen (Umschlagleistung) des zu betrachtenden Lagersystems bestimmen. Aufgrund der genannten Forderungen muss es gelingen, aus dem eingesetzten technischen System durch organisatorisch effizienten Betrieb maximale Leistung bei gleichzeitig minimal eingesetzten Kosten zu erzielen. Neben den Investitionskosten sind bei der Planung von automatischen Lagersystemen die erreichbaren mittleren Spielzeiten der Bedientechnik von entscheidender Bedeutung, um die erforderliche Umschlagleistung des Lagers zu gewährleisten. Hierzu existieren eine Reihe von Berechnungsvorschriften und –normen. Diese Berechnungen berücksichtigen jedoch nicht die Auswirkungen der Lagerorganisation, wie beispielsweise fahrzeitminimale Kombinationen von Ein- und Auslageraufträgen bei Doppelspielen, Zonierungsmaßnahmen, die Auswirkungen von verschiedenen Füllgraden des Lagers oder Lagerplatzstrategien. 2. Stand der Technik 2.1. Lagertypen Abbildung 1: Systematische Einteilung der Lagertypen In Abbildung 1 sind verschiedene Lagertypen dargestellt und nach Kriterien eingeteilt. Soll eine Einschränkung hinsichtlich am Markt häufig vorkommender automatischer Palettenlager getroffen werden, so sind besonders die in der Abbildung hervorgehobenen Typen zu nennen. Eine Auswahl der einzelnen Lagertypen erfolgt dann anhand von Kosten, Umschlagleistung und bei Kompaktlagern vorrangig anhand von Flächen- und Raumnutzungsgrad. Werden die Kostenunterschiede bei Personal, Rechentechnik und Steuerungssoftware in den verschiedenen Lagertypen und -ausführungen der jeweiligen Typen vernachlässigt, unterscheiden sich die Gesamtkosten der Lager lediglich in der Bedientechnik sowie in den statisch bedingten Kosten der Regalkonstruktion. Die wichtigsten Kosteneinflüsse auf die Regale sind wiederum Bauhöhe und Bauart (Regalkonstruktion oder selbsttragendes Bauwerk). Abbildung 2 zeigt die zu erwartenden Umschlagleistungen1) der verschiedenen Lagertypen in Abhängigkeit der benötigten Stellplatzanzahl. Die darauf folgende Abbildung 3 zeigt die zu erwartenden Investitionskosten1) je Stellplatz. Die berücksichtigten Kenngrößen sind nachstehend dargestellt. Die abgebildeten Kurven machen deutlich, dass insbesondere Umschlagleistung der Lager und deren Flächen- bzw. Raumnutzungsgrad gegensätzlich verlaufen. Somit sind auch die Einsatzgebiete der Lagertypen voneinander abgrenzbar. Während Hochregallager für Anwendungsfälle mit hohem Gutumschlag in Frage kommen, werden die Kompaktlager eher in Objekten mit begrenztem Platz oder hohen Raumkosten (bspw. Kühllager) eingesetzt. Somit sind Kompaktlager auch häufig für die Umplanung bzw. der notwendigen Vergrößerung der Lagerkapazität innerhalb einer bestehenden baulichen Hülle interessant. Abbildung 2: Umschlagleistungen der verschiedenen Lagertypen Abbildung 3: Investitionskosten der einzelnen Lagertypen 2.2. Einzel-/ Doppelspiele Um anhand der Technik und der geometrischen Verhältnisse im Lager die höchstmögliche Umschlagleistung zu erzielen, ist es sinnvoll, Doppelspiele (DS) zu generieren. Somit ist nicht wie bei Einzelspielen (ES) je umgeschlagene Ladeeinheit eine Leerfahrt erforderlich, sondern nur je zweiter Ladeeinheit. Das Bediengerät fährt also vom Einlagerpunkt direkt zum Auslagerpunkt, ohne zum Übergabepunkt zurückkehren zu müssen. Diese Vorgehensweise setzt die Kenntnis der nächsten Fahraufträge und gegebenenfalls die Möglichkeit der Veränderung derer Reihenfolge voraus. Für eine Optimierung der Umschlagleistung ist die bei DS entstehende Leerfahrt (Zwischenfahrstrecke) und damit die Zwischenfahrzeit zu minimieren (vgl. 3.5). Nachfolgend beschriebene Untersuchungen beziehen sich jeweils auf Doppelspiele. Abbildung 4: Darstellung der anzufahrenden Lagerplätze in der Regalwand,links: Einzelspiel, rechts: Doppelspiel 2.3. Berechnungsvorschriften für Umschlagleistungen von Lagern Es existieren eine Reihe von Vorschriften zur Berechnung der Umschlagleistung von Lagern, exemplarisch sind drei Berechnungsvorschriften dargestellt. Die Richtlinie VDI 3561 [VDI3561] ermöglicht die Berechnung der Spielzeit auch für Doppelspiele. Dazu werden zwei Referenzpunkte festgelegt, die den Aus- bzw. Einlagerpunkt darstellen. Ein Doppelspiel besteht dann aus der Summe folgender Einzelzeiten: • der Hinfahrt vom Übergabepunkt zum Einlagerpunkt (P1), • der Leerfahrt vom Ein- zum Auslagerpunkt (P2) und der • Rückfahrt vom Auslagerpunkt zum Übergabepunkt (vgl. Abb.4 rechts). Die Summe dieser Einzelzeiten wird danach mit der Summe der Übergabezeiten addiert. Der Unterschied der Richtlinie und der Berechnungsvorschrift nach [Gud00] bestehen im wesentlichen aus der Lage der Ein- und Auslagerpunkte. Fahrzeitberechnung nach VDI 3561 P1 ; P2 Fahrzeitberechnung nach Gudehus 1) P1 ; P2 1)Annahme: Vernachlässigung von Totzeiten, Lastaufnahmefaktor = 1 Wird davon ausgegangen, dass in Abhängigkeit der Gassengeometrie immer nur eine der beiden Fahrzeitanteile (vertikal bzw. horizontal) spielzeitbestimmend ist, so ergeben sich beide Fahrstrecken zu 4/3 der jeweiligen Gesamtabmessung. Der Unterschied der beiden Berechnungsvorschriften liegt lediglich in der Aufteilung der Gesamtfahrstrecke auf die Teilfahrstrecken Hin-, Rück- bzw. Zwischenfahrt. Da jedoch die Fahrzeit zu den Anfahrpunkten in der Regel nicht von der gleichen Fahrzeitkomponente bestimmt wird, kommt es in der Praxis zu Unterschieden im Berechnungsergebnis. Die unter dem Titel „Leistungsnachweis für Regalbediengeräte, Spielzeiten“ stehende Norm FEM 9.851 [FEM9.851] beschäftigt sich ebenfalls mit der Berechnung von Spielzeiten von Regalbediengeräten (RBG). Dabei werden sechs verschiedene Anwendungsfälle generiert, die am häufigsten in der Praxis vorkommen. Diese unterscheiden sich insbesondere in der Lage der Übergabepunkte für die Ein- und Auslagerung. Dabei werden die Punkte sowohl horizontal als auch vertikal verschoben. Es werden hierbei auch Fälle betrachtet, in denen der Auslagerpunkt nicht mit dem Einlagerpunkt übereinstimmt, sich beispielsweise auch an dem gegenüberliegenden Gassenende befinden kann. Wird der einfachste Fall betrachtet, dass sich der Übergabepunkt für die Ein- und Auslagerung übereinstimmend an einer unteren Ecke der Gasse befindet, stimmen die Berechnungsformeln mit [Gud00] weitgehend überein. 2.4. Kritik und Untersuchungsansatz Die Berechnung der mittleren Spielzeit der einzelnen Lagergassen durch die beschriebenen Normen erfolgt in der Regel ohne die Berücksichtigung der Geschwindigkeitsdiagonalen, deren Steigung c durch nachstehendes Verhältnis gegeben ist. 1. Einleitung Eine umfassende Prozessanalyse ist die Grundlage einer jeden erfolgreichen RFID-Anwendung [o.Verf. 2006]. Die Merkmale, die bei einer solchen Untersuchung zu beachten sind, werden allerdings nicht öffentlich diskutiert. Wie Resch in seinem Ansatz zeigt, ist aber gerade die Analysephase von entscheidender Bedeutung für den späteren Erfolg einer RFID-Anwendung (vgl. Abb. 1). Abbildung 1: Fehlende Methodiken der Prozessanalyse [Resch2005] In dieser Phase besteht der größte Gestaltungsfreiraum für die spätere Umsetzung. Da in dieser Phase das größte Optimierungspotenzial einer RFID-Anwendung festgelegt wird, entscheidet sich bereits zu Beginn eines Projektes wie groß der maximal erreichbare Nutzen einer Lösung sein kann. Bisher existieren keine allgemein verbreiteten Methoden und Kriterien zur Identifikation dieser Einsatz-/Nutzenpotenziale. Die Prozessanalyse ist die Basis zukünftiger RFID-Anwendungen und ist daher entsprechend umfangreich durch zu führen. RFID-Einsatzpotenziale werden aktuell nur in Funktionsbereichen kommuniziert. Diese Pauschalisierung engt die Sicht auf potenzielle Anwendungen allerdings sehr stark ein. Dadurch besteht die Gefahr, dass die vorhandenen Nutzenpotenziale indirekt beteiligter Prozesse nicht beachtet werden. Es ist daher zwingend notwendig möglichst alle material- und informationsflussbezogenen Prozesse auf ein RFID-Einsatzpotenzial hin zu untersuchen. D.h. sowohl die Prozesse mit direktem Materialflussbezug (bspw. Wareneingang) als auch die Prozesse, die nur indirekt, über den Informationsfluss, mit dem Materialfluss verknüpft sind (bspw. Disposition). Der vorliegende Beitrag stellt daher einen ersten Ansatz für die Ermittlung allgemeingültiger Analysekriterien für RFID-Einsatzpotenziale. Die vorgestellte Methodik und der daraus entwickelte Kriterienkatalog sollen es ermöglichen, RFID-Anwendungen in der Analysephase auf ein möglichst vollständiges Nutzengerüst zu stellen und so den maximalen Nutzen einer Anwendung systematisch zu ermitteln. 2. Identifikationskriterien 2.1. Methodik Basierend auf der Überlegung die Kriterien sowohl theoretisch als auch auf Basis von Praxiserfahrungen zu entwickeln, dienen neben der Betrachtung technischer Grundlagen auch Analysen von realisierten Anwendungen und Pilotprojekten als Basis der Kriterienentwicklung. Abbildung 2 zeigt die grundsätzliche Methodik hinter der Entwicklung der Kriterien. Dabei zeigt sich, dass aus dem gewählten Ansatz zwangsläufig zwei differierende Typen von Kriterien entwickelt werden müssen. Technische Kriterien, aus den Grundlagen der RFID beziehen sich vor allem auf das vorherrschende Prozessumfeld. Frequenzspezifische Eigenschaften (Leistungsdaten) und allgemeine, also frequenzübergreifende Eigenschaften der RFID-Technik bilden die Ausgangsbasis für diese Kriteriengruppe. Dabei werden diese technologischen Eigenschaften in Prozessmerkmale überführt, anhand derer im konkreten Prozessumfeld eine Technologieauswahl durchgeführt werden kann. So können potenzielle RFID-Anwendungen auf eine prinzipielle Anwendbarkeit hin überprüft werden. Abbildung. 2: Vorgehen zur Entwicklung der Identifikationskriterien [Resch2005] Die zweite Gruppe der Kriterien, die organisatorischen Kriterien, werden aus Praxiserfahrungen abgeleitet. Basis dieser Analyse sind Prozesse aus realisierten Anwendungen und Pilotprojekten. Dieser praxisbasierte Teil stellt prozessbezogene Merkmale zusammen, deren Schwerpunkt auf prozessspezifischen organisatorischen Merkmalen, bspw. Durchsatz, oder auch Dokumentationsaufwand liegt. Die ausgewählten Praxisbeispiele sind nach ihren individuellen Prozessmerkmalen analysiert worden. Die Ergebnisse wurden stichpunktartig zusammengefasst, in übergeordnete Kategorien gruppiert und abschließend nach ihrem Flussbezug gegliedert. RFID-Anwendungen beeinflussen sowohl materialflussbezogene Prozesse, als auch direkt oder auch indirekt verknüpfte informationsflussbezogene Prozesse. Daher erfolgt eine Ordnung der identifizierten Kriteriengruppen nach ihrem Flussbezug, um so einem Anwender die Betrachtungsweise nachhaltig zu verdeutlichen und die Analyse zu vereinfachen. 2.2. Praxisbeispiele Die analysierten Praxisbeispiele sind zum Großteil in der Automobilindustrie realisiert (vgl. Abb. 3). Die weiteren Anwendungen sind aus der Instandhaltung sicherheitsrelevanter technischer Gebäudeausrüstung, aus einem Hochregallager eines Logistikdienstleisters sowie aus der Luftfahrtindustrie. Abbildung 3: Branchenspezifische Verteilung der Praxisbeispiele Die Auswahl der Praxisbeispiele ist bewusst auf die Automobilindustrie fokussiert. Dieser Industriezweig hat in Deutschland bereits einige Anwendungen und eine Vielzahl an Pilotprojekten initiiert. Die Bandbreite der realisierten Projekte ist sehr groß und deckt daher viele verschiedene Anwendungsfälle ab. Die Ergebnisse der Untersuchung sind aber auch auf andere Branchen übertragbar, da die untersuchten Praxisprojekte Situationen abbilden, die ebenfalls leicht zu übertragen sind. Die analysierten Anwendungen bilden ein sehr breites Feld an Einsatzszenarien ab. Anwendungen mit massenhaften Stückzahlen sind ebenso vertreten, wie Anwendungen mit hohem Spezialisierungscharakter. Die Anwendungen reichen dabei von einfachen Pilotprojekten im Ladungsträgermanagement, bis hin zu komplexen Anwendungen im Bereich der Produktionssteuerung und der unternehmensübergreifenden Koordination von Materialflüssen. Insgesamt verteilen sich die analysierten Anwendungen auf drei Schwerpunktbereiche. Abbildung 4 stellt die Anwendungsbereiche in einer Übersicht zusammen. Abbildung 4: Übersicht der Anwendungsgebiete aus den Praxisanwendungen Anwendungen aus den Bereichen der Produktionssteuerung und des Materialflusses sind dabei am häufigsten vertreten. Während die Anwendungen aus dem Bereich der Instandhaltung, bzw. dem Qualitätsmanagement, meist mit der Hauptanwendung aus dem Bereich der Produktionssteuerung verknüpft sind. So wird bspw. die Dokumentationen der einzelnen Fertigungsstationen i.d.R. sowohl zur Fertigungssteuerung als auch zur Qualitätssicherung genutzt. 2.3. Ergebnisse der Praxisanalyse Die Analyse der Praxisanwendungen brachte in einem ersten Schritt eine Fülle an spezifischen Merkmalen zusammen. Jeder analysierte Prozess wies seine eigenen Merkmale auf, die aber dem Grundsatz nach systematisiert werden konnten. Die so erarbeiteten Merkmale wurden in einem zweiten Schritt gruppiert. Insgesamt ergaben sich fünf Gruppen, die jeweils nach einer, durch die RFID-Technik durchgeführte Funktion benannt sind. Um eine Prozessanalyse mit Hilfe der Kriterien zu erleichtern, ist jede Gruppe ihrem übergeordneten Flusssystem zugeordnet worden. Nachstehende Abbildung 5 zeigt die einzelnen Gruppierungen mit ihrem jeweiligen Flussbezug. Dabei sind jeder Gruppe beispielhafte Merkmale zugeordnet. Abbildung 5: Organisatorische Kriterien zur Identifikation von RFID-Einsatzpotenzialen Die vorliegende Systematisierung von Identifikationskriterien deckt sowohl Aspekte des reinen Materialflusses, als auch die Aspekte der zugehörigen Informationsflüsse ab. Dabei verhält sich der Flussbezug in jeder Kriteriengruppe unterschiedlich. Die Kriterien der Gruppe Identifikation befassen sich ausschließlich mit dem Identifikationsvorgang. Dabei können die erarbeiteten Kriterien in zwei Arten unterschieden werden, quantitative und qualitative Kriterien. Qualitativ messbar sind Kriterien, die sich auf die Anzahl der Identifikationsvorgänge beziehen. Bspw. die Anzahl der Identifikationsvorgänge im betrachteten Prozessverlauf, bezogen auf ein Identifikationsobjekt oder die Anzahl der Identifikationsvorgänge pro Zeiteinheit an einem Identifikationspunkt innerhalb des Prozessverlaufs. Gleichzeitig umfasst diese Gruppe aber auch Kriterien, die nur qualitativ zu bewerten sind. Kriterien wie die Bedeutung einer exakten Identifikation einzelner Teile im Prozess oder auch der aktuelle Aufwand der Identifikation im Prozess lassen sich nur bedingt oder nicht quantifizieren. Diese Kriteriengruppe fokussiert mit ihren Merkmalen vor allem den Materialfluss. Die einzelnen Merkmale beziehen sich auf den tatsächlichen Identifikationsvorgang und nicht auf die zugehörigen Informationsflüsse. Unter dem Begriff Transparenz sind Kriterien gruppiert, die sich mit der Verfolgbarkeit und Übersichtlichkeit von Prozessen befassen. Dabei gilt es sowohl die Bedeutung für den aktuellen Prozess als auch für die abhängigen Prozesse zu ermitteln. Transparenz bzw. die fehlende Transparenz ist der Kern dieser Kriteriengruppe. Qualitative Kriterien sind in dieser Kategorie besonders stark vertreten, da vor allem die Bedeutung bestimmter Aspekte der Prozesstransparenz als Kriterium dient. Prozesstransparenz liegt i.d.R. nicht vor oder wird nur über komplexe Systeme erreicht. Die Bewertung dieser Kriteriengruppe ist höchst variabel, da Prozesstransparenz in ihrer Bedeutung höchst individuell ist, d.h. von Prozess zu Prozess stark variiert. Die Gruppe Konfiguration fasst Merkmale zusammen, die auf objektspezifische Anpassungsarbeiten im Prozessverlauf hinweisen. Diese Tätigkeiten sind i.d.R. mit einem quantifizierbaren Aufwand verbunden und können so leicht erfasst werden. Die RFID-Technologie eröffnet hier, ähnlich wie im Bereich der Identifikation, Chancen zur Automatisierung bestehender Prozesse. Die Kriterien konzentrieren sich in ihrer Zielrichtung daher schwerpunktmäßig auf die Untersuchung von Potenzialen hinsichtlich der Automation von Konfigurationsvorgängen. Ähnlich wie die vorstehende Gruppe der Transparenz, besitzt diese Gruppe ebenfalls einen starken Bezug zu beiden Flusssystemen. In beiden Gruppen liegt der Fokus der betrachteten Merkmale sowohl auf dem Materialfluss und den physischen Aktionen als auch auf den zugehörigen Informationsflüssen mit entsprechenden Tätigkeiten. Die vierte Gruppe Zuordnung enthält primär Merkmale, die sich auf den Informationsfluss beziehen. Im Vordergrund steht die Art und Weise in der innerhalb eines Prozesses Materialflüsse zwischen Quelle und Senke koordiniert werden. Diese Gruppe enthält ebenfalls sowohl qualitativ als auch quantitativ zu bewertenden Merkmale. RFID-Technik kann hier zu einer deutlichen Komplexitätsreduktion, einer Automation sowie der Reduktion von Stillstands- u. Wartezeiten führen. Die letzte Gruppe Datenverwendung und Dokumentation befasst sich beinahe ausschließlich mit Aspekten des Informationsflusses. Als beinahe Komplementär zur Gruppe der Identifikation stehen hier die informationsflussbezogenen Handlungen, ausgelöst durch einen zugehörigen Materialfluss in der Betrachtung. Dabei stehen vor allem Fehlerraten, manuelle Aufwende der Datenverarbeitung und die Anzahl an Medienbrüchen im Informationsfluss im Vordergrund. Auch hier existiert wiederum ein Geflecht aus qualitativen und quantitativen Kriterien, deren Bewertung individuell durchzuführen ist. 2.4. Technische Kriterien Ergänzt werden die organisatorischen Kriterien um die technischen Kriterien. Diese Kriterien leiten sich aus den technischen Grundlagen der RFID-Technik ab. Diese Grundlagen sind zum einen die Eigenschaft der kontakt- und sichtlosen Übertragung von Energie und Daten, zum anderen der physische Aufbau der Komponenten eines RFID-Systems, dem Reader und dem Transponder. Des Weiteren definieren die frequenzspezifischen Eigenschaften der verschiedenen RFID-Systeme unterschiedliche Leistungsparameter, aus denen technische Kriterien abgeleitet werden können. Daraus ergibt sich die logische Trennung in frequenzabhängige und frequenzunabhängige Kriterien. Auszüge dieser Kriterien zeigt nachstehende Abbildung 6 Abbildung 6: Technische Kriterien Die technischen Kriterien dienen eher zur Technologieauswahl, als zu einer reinen Potenzialidentifikation, da ausschließlich limitierende Aspekte der Technologie betrachtet werden. Einflüsse, bedingt durch die genutzte technische Ausrüstung (bspw. metallische Lagertechnik) oder verfahrensbedingte Einflüsse (elektromagnetische Felder, Schweißroboter, o.ä.), werden über diese Kriterien abgebildet und finden so Berücksichtigung in den zu entwickelnden RFID-Szenarien. Die Wirkung dieser Kriterien hängt stark von dem jeweiligen Stand der Technik ab. Galt bspw. der Einsatz von 13,56 MHz Transpondern direkt auf Metall vor fünf Jahren noch als nicht möglich, so ist die Technik mittlerweile so weit entwickelt, dass auch Lösungen in diesem Bereich angeboten werden. Daher muss festgehalten werden, dass die frequenzabhängigen technischen Kriterien im Zeitverlauf variabel in ihrer Wirkung sind und sich mit dem technischen Fortschritt der RFID-Hardware verändern. Atmosphärische Einflüsse auf die RFID-Hardware sind generell für alle Varianten (unabhängig von der Betriebsfrequenz) der RFID-Technik zu beachten. Der Einfluss der Umgebungsbedingungen auf die Integrität der Hardware ist immer zu berücksichtigen. Temperatur, Druck und Staubbelastung sind hier die Hauptgruppen äußerer Einflüsse auf die RFID-Hardware. Auch diese Gruppe der technischen Kriterien muss mit der sich verändernden technischen Leistungsfähigkeit in ihrer Bewertung angepasst werden. 3. Anwendung der Kriterien 3.1. Anwendungsbeispiel Die Anwendung der Kriterien wird im Folgendem anhand eines kurzen Beispiels erläutert. Nachstehende Abbildung 7 zeigt Ausschnitte aus einem fiktiven Prozess innerhalb eines Großlagers. Abbildung 7: Fiktiver Prozess Von der Entladung des LKW bis zur Einlagerung der Paletten ist der Prozess in vier grobe Phasen strukturiert. Zur Identifikation von RFID-Einsatzpotenzialen werden die einzelnen Prozesselemente nach dem in Tabelle 1dargestellten Schema untersucht. Tabelle 1: Exemplarische Anwendung der Kriterien an einem ausgewählten Beispiel Kriteriengruppe Kriterium Einheit Prozesselement Entladen des LKW Bezugsobjekt LKW Palette Identifikation Anzahl ID - Vorgänge pro Objekt 1/Stck. 2 1 Anzahl ID - Objekte im Zeitraum Stck./ZE 25/h 10/min Transparenz Bedeutung exakter Prozesszeiterfassung Qual. Hoch Hoch intransparente Prozessabschnitte ja/nein Ja Ja Konfiguration Anzahl objektspez. Konfigurationsarbeiten 1/Stck. 0 0 Manueller Anteil der Konfiguration Qual. - - Zuordnung Fehleranteil der Zuordnung Q/S Qual. Mittel Gering Komplexität der Zuordnung Q/S Qual. Hoch Hoch Datenverwendung und Dokumentation Anzahl der Änderungen objektspezifischer Daten im Prozess 1/Stck. 8 (6-7) 2 Anzahl der Medienbrüche im Prozess 1/Stck. - - Die Tabelle zeigt, wie einzelne Prozesselemente mit Hilfe der Identifikationskriterien analysiert werden können. Dabei ergeben sich aus den Ausprägungen der einzelnen Kriterien die Nutzenpotenziale auf deren Basis sich eine spätere RFID-Anwendung gestalten und bewerten lässt. Für die Analyse der einzelnen Prozesselemente ist es notwendig, die Kriterien auf ein Bezugsobjekt zu beziehen. Dieses Bezugsobjekt stellt den potenziellen Träger des Transponders dar. Dabei ist zu beachten, dass innerhalb eines Prozesses mehrere Bezugsobjekte vorhanden sein können. Die Analyse muss daher für jedes Bezugsobjekt einzeln durchgeführt werden. Die Zusammenfassung der Analyseergebnisse pro Bezugsobjekt, über die zusammengehörigen Prozesselemente zeigt die Nutzenpotenziale innerhalb der einzelnen Prozesse. 3.2. Verwendung der Ergebnisse und Bewertungsmöglichkeiten identifizierter Einsatzpotenziale Im vorstehenden Absatz wurde gezeigt, wie die erarbeiteten Kriterien zur Prozessanalyse genutzt werden können. Aus der Analyse ergeben sich Nutzenpotenziale für den RFID-Einsatz. Inwieweit diese erkannten Potenziale tatsächlich zu einer wirtschaftlichen RFID-Anwendung führen, muss in einem zweiten Schritt geprüft werden. Dabei muss festgestellt werden, dass es keine RFID-Lösung „von der Stange“ gibt [Lammers2006]. Jede Anwendung muss individuell auf Wirtschaftlichkeit geprüft werden. Dabei spielen vor allem die Kriterien eine starke Rolle, die nur qualitativ erfasst werden können, z. B. die Bedeutung einer exakten Erfassung der Prozesszeit. Quantitativ erfassbare Kriterien sind vergleichsweise einfach in der wirtschaftlichen Beurteilung, obwohl auch für diese Art Kriterium keine allgemein gültigen Richtwerte zur Beurteilung existieren. Zu groß sind hier die Unterschiede zwischen einzelnen Prozessen und den möglichen Einspareffekten, bedingt durch differierende Kostentreiber und Anforderungen an Leistungsfähigkeiten. Weiterhin müssen sowohl qualitative als auch quantitative Kriterien immer im Zusammenhang gesehen werden. Nur dann kann der potenzielle Nutzen einer RFID-Anwendung vollständig ermittelt werden. Erst aus der Kombination dieser beiden Faktorgruppen ergibt sich das maximale Nutzenpotenzial einer RFID-Anwendung. Vor diesem Hintergrund sind die einzelnen Nutzenpotenziale zu erfassen, daraus mögliche RFID-Szenarien zu entwickeln und diese Szenarien einer abschließenden, detaillierten Wirtschaftlichkeitsanalyse zu unterziehen.
Resumo:
Die Ergebnisse der Konstruktion können so aufbereitet werden, dass sie nach entsprechenden Berechnungen und Simulationen als virtuelle Prototypen zur Verfügen gestellt werden können. Die Möglichkeiten des Einsatzes virtueller Prototypen werden aufgezeigt. Der Unterschied zwischen virtuellen und realen Prototypen in Bezug auf die individuelle Wahrnehmung aufgrund der Sinnesmodalitäten wird erläutert. Die gegenwärtigen Grenzen der virtuellen Prototypen werden aufgezeigt.
Resumo:
e-Manufacturing™, das ist die schnelle, flexible und kostengünstige Fertigung von Produkten, Formen/Werkzeugen oder Modellen direkt aus elektronischen Daten. e-Manufacturing™ schließt Rapid Prototyping, Rapid Tooling oder Rapid Manufacturing ein, geht aber zugleich weit über den Gedanken der schnellen Verfügbarkeit hinaus. Zwar wird auch in Zukunft die schnelle Produktentwicklung eine immer wichtigere Rolle spielen, bei der e-Manufacturing™ für ein verkürztes Time to Market sorgt, Entwicklungskosten verringert und zur Risikominimierung beiträgt. Darüber hinaus entstehen aber auch neue Geschäftsmodelle, da Kleinserienproduktion, steigende Variantenvielfalt und eine individualisierte Produktion (Mass Customization) plötzlich möglich und wirtschaftlich sind und sich neue Logistikkonzepte wie (Spare) parts on demand entwickeln. Die neue Konstruktionsfreiheit des Laser-Sinterns ermöglicht neue Produktkonzepte. Minimale Einschränkungen durch das Fertigungsverfahren erlauben funktionelle Integration und die Fertigung des „Unmöglichen“, da kreisförmige und lineare Werkzeugbewegungen das Produktdesign nicht mehr beeinflussen bzw. limitieren. Auch die Fertigungskonzepte unterliegen einem Wandel und werden deutlich flexibler. Werkzeuglose Produktion, losgrößenangepasste Fertigung und dezentrale Fertigung on demand sind die Schlagworte der Zukunft. Der vorliegende Beitrag zeigt Beispiele für den erfolgreichen kommerziellen Einsatz von Laser-Sintern in allen Phasen des Produktlebenszyklus. Der Schwerpunkt liegt dabei auf der direkten Herstellung von Funktionsteilen in der Serienfertigung. Die entscheidenden Faktoren für eine erfolgreiche Einführung und Anwendung von e-Manufacturing™ werden diskutiert. Der Beitrag zeigt auf, wie die neuesten technologischen Innovationen im Laser-Sintern, speziell zur Produktivitätssteigerung, das Spektrum der Anwendungsfelder erweitern, in denen dieses Fertigungsverfahren kostengünstige Lösungen bietet.
Resumo:
Generative Verfahren sind seit etwa 1987 in den USA und seit etwa 1990 in Europa und Deutschland in Form von Rapid Prototyping Verfahren bekannt und haben sich in dieser Zeit von eher als exotisch anzusehenden Modellbauverfahren zu effizienten Werkzeugen für die Beschleunigung der Produktentstehung gewandelt. Mit der Weiterentwicklung der Verfahren und insbesondere der Materialien wird mehr und mehr das Feld der direkten Anwendung der Rapid Technologie zur Fertigung erschlossen. Rapid Technologien werden daher zum Schlüssel für neue Konstruktionssystematiken und Fertigungsstrategien. Die Anwendertagung Rapid.Tech befasst sich mit den neuen Verfahren zur direkten Produktion und den daraus erwachsenden Chancen für Entwickler und Produzenten. Die Kenntnis der Rapid Prototyping Verfahren wird bei den meisten Fachvorträgen auf der Rapid.Tech vorausgesetzt. Für diejenigen, die sich bisher mit generativen Verfahren noch nicht beschäftigt haben, oder die ihre Grundkenntnisse schnell auffrischen wollen, haben wir die folgenden Zusammenfassung der Grundlagen der generativen Fertigungstechnik, der heutigen Rapid Prototyping Verfahren, zusammengestellt.
Resumo:
Die Verkürzung der Zeit von der Produktidee bis zur Markteinführung wird für Unternehmen in nahezu allen Branchen zunehmend zum Wettbewerbsfaktor. Fertigungsverfahren, bei denen kein Material abgetragen sondern aufgebaut wird, können in diesem Zusammenhang ein Alternative zur konventionellen Fertigung darstellen. Ein generatives Verfahren, welches besonders zur schnellen Fertigung von Prototypwerkzeugen mit Kantenlängen größer 300 mm geeignet ist, ist das Metal Laminated Tooling (MELATO®). Bei diesem Verfahren werden komplex geformte Werkzeuge aus Stahlblechzuschnitten zusammengesetzt und in Abhängigkeit vom Anwendungsgebiet kraft- oder stoffschlüssig verbunden. Das Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden arbeitet gemeinsam mit industriellen Partnern aus den Gebieten Werkzeug- und Anlagenbau sowie Softwareentwicklung und Sensorik an einer Automatisierungslösung für das Schneiden, Paketieren und Fügen von Blechzuschnitten. Damit soll die Fertigungszeit großer Werkzeuge von derzeit etwa 12 Wochen auf eine Woche verkürzt werden. Neben der Anwendung im Bereich der Präge- oder Tiefziehwerkzeuge ist das Verfahren prädestiniert für die Herstellung von Spritzgusswerkzeugen mit konturfolgenden Kühlkanälen. Die Darstellung der Prozesskette, möglicher Verbindungstechnologien und realisierte Anwendungen sind Gegenstand des vorliegenden Beitrages.
Resumo:
Bedingt durch die geringen Aufbauraten blieb die Anwendung des direkten Lasersinterverfahrens (DMLS) bislang auf die Herstellung kleinerer Formeinsätze für den Spritzguss- bzw. Al-Druckgusswerkzeugbau beschränkt. Um die Technologie des Rapid Tooling auf das Anwendungsfeld für größere Werkzeugeinsätze zu erweitern, ist vom IFAM zusammen mit weiteren europäischen Projektpartnern im Rahmen des Projekts ecoMold der sog. modulare Werkzeugbaukasten entwickelt worden. Das Konzept beruht darauf, dass ein Werkzeugeinsatz in Module zerteilt wird, die separat gefertigt werden. Jedes Modul setzt sich aus einer Grundgeometrie und einer Formgeometrie zusammen. Die Grundgeometrie stellt Volumenbereiche des Werkzeugeinsatzes dar, die keine formbestimmenden Geometrien beinhalten. Die Grundgeometrien werden als standardisierte Grundmodule durch Fräsen kostengünstig hergestellt. Die formbestimmenden Geometrien des Einsatzes werden durch das Lasersinterverfahren auf die Grundmodule aufgesintert. Die verschiedenen Module werden dann zum fertigen Werkzeugeinsatz montiert. Grundlage ist der vollständige STL-Datensatz der beiden Werkzeughälften. Auf der Basis einer Datenbank, die alle zur Verfügung stehenden Grundmodule in verschiedenen Abmessungsabstufungen enthält, wird die Anzahl, die Größe und die Lage der Module automatisiert von der am IFAM entwickelten Software bestimmt. Dabei wird versucht, den ursprünglichen STL-Datensatz des Werkzeugeinsatzes derart in einzelne Module zu zerlegen, dass die aufzusinternden Bereiche minimiert werden und möglichst viele Volumenbereiche des Einsatzes durch die in der Datenbank hinterlegten Grundmodule gefüllt werden. Mit dem vorgestellten System steht ein neues Fertigungskonzept zur Verfügung, das durch eine Kombination aus Lasersinter- und Fräsverfahren gestattet, das Lasersinterverfahren auch für Rapid-Tooling-Anwendungen für größere Bauteile anzuwenden. Erste Erfahrungen und Kalkulationen haben ergeben, dass im Vergleich zu konventionell hergestellten Werkzeugeinsätzen die Kosten um ca. 35% und die benötigten Bauzeiten um ca. 30% reduziert werden können.
Resumo:
Automatisiertes Kommissionieren von biegeschlaffen Teilen stellt seit jeher ein besonderes Problem für die Handhabungstechnik dar, und es sind bisher verschiedenartigste sondermaschinenbauliche Lösungen hervorgebracht worden. Auch für das Kommissionieren von in Folien verpackten Artikeln gibt es einige Lösungen. Diese sind aber hinsichtlich ihrer Anwendung für in Beuteln verpackte Güter eingeschränkt. Ein neuartiges, am Fraunhofer-IML entwickeltes Verfahren verspricht Abhilfe. Der folgende Beitrag stellt dieses Verfahren im Detail vor und zeigt vergangene und zukünftige Untersuchungsfelder auf, die im Rahmen der Entwicklung bearbeitet wurden bzw. werden und sich insbesondere mit der Dimensionierung der Gerätschaften und Hilfsmittel beschäftigen.
Resumo:
Die Praxis zeigt, dass die aktuell gültigen Normen und Richtlinien für die Anforderungen an Böden in Schmalganglagern nicht dazu geeignet sind, die Laufruhe eines darauf betriebenen Schmalgangstaplers sicherzustellen. Durch eine Untersuchung der Fahrdynamik dieser Geräte mit Hilfe der Mehrkörpersimulation kann ein Zusammenhang zwischen den Bodenunebenheiten und dem Schwingungsverhalten des Staplers dargestellt werden. Hierfür sind alle wesentlichen, die Schwingungen beeinflussenden Baugruppen abzubilden, wobei ein besonderer Schwerpunkt auf die geeignete Abbildung des Bodens gelegt wird. Mit periodischen und regellosen Unebenheiten werden zwei Gruppen von Unebenheiten unterschieden. Die systematische Behandlung der regellosen Unebenheiten ist nur unter Anwendung statistischer Methoden möglich. Man wählt den Weg über die Spektraldichtefunktionen und kann somit die Einflussgrößen auf die Bodengüte auf einen einzigen Parameter reduzieren. Zugleich eröffnet die Verwendung der Spektraldichtefunktionen die Anwendbarkeit eines Algorithmus zur Generierung von realitätsnahen Unebenheitsverläufen für die Simulation.
Resumo:
Automatisiertes Kommissionieren von biegeschlaffen Teilen stellt seit jeher ein besonderes Problem für die Handhabungstechnik dar, und es sind bisher verschiedenartigste sondermaschinenbauliche Lösungen hervorgebracht worden. Auch für das Kommissionieren von in Folien verpackten Artikeln gibt es einige L��sungen. Diese sind aber hinsichtlich ihrer Anwendung für in Beuteln verpackte Güter eingeschränkt. Ein neuartiges, am Fraunhofer-IML entwickeltes Verfahren verspricht Abhilfe. Der folgende Beitrag stellt dieses Verfahren im Detail vor und zeigt vergangene und zukünftige Untersuchungsfelder auf, die im Rahmen der Entwicklung bearbeitet wurden bzw. werden und sich insbesondere mit der Dimensionierung der Gerätschaften und Hilfsmittel beschäftigen.
Resumo:
Der Anwendungsbereich für Modelle und Prototypen hat sich mittlerweile auch auf unterschiedlichste medizinische Fragestellungen ausgedehnt. Der vorliegende Beitrag zeigt an verschiedenen Praxisbeispielen und Verfahren Möglichkeiten eines in der Technik etablierten Verfahrens für eine erweiterte Anwendung auf.
Resumo:
Dieser Beitrag zeigt die Anwendung des Ant-Colony-System (ACS) Algorithmus auf die Sequenzierung von Querverteil-Wagen in einem Lager. Wir erweitern den Basisalgorithmus der Ant-Colony-Optimierung (ACO) für die Minimierung der Bearbeitungszeit einer Menge von Fahraufträgen für die Querverteil-Wagen. Im Vergleich zu dem Greedy-Algorithmus ist der ACO-Algorithmus wettbewerbsfähig und schnell. In vielen Lagerverwaltungssystemen werden die Fahraufträge nach dem FIFO-Prinzip (First-in-First-out) ausgeführt. In diesem Beitrag wird der ACO-Algorithmus genutzt, um eine optimale Sequenz der Fahraufträge zu bilden.
Resumo:
Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Für Einzelkomponenten von Materi-alflusssystemen sind neben exakten analytischen Verfahren auch Näherungslösungen und Ersatzmodelle in Form von Polynomen, neuronalen Netzen oder zeitdiskreten Verfahren vorhanden, mit denen eine gute Nachbildung des Verhaltens dieser Komponenten möglich ist. Ziel des Baukastensystems ist es, für diese Vielzahl von Methoden mit ihren spezifischen Ein- und Aus-gangsgrößen eine übergeordnete, einheitliche Kommunikations- und Datenschnittstelle zu definieren. In einem grafischen Editor kann ein Modell eines Materialflusssystems aus solchen Bausteinen gebildet und parametriert werden. Durch Verbindungen zwischen den Bausteinen werden Informationen ausge-tauscht. Die Berechnungen der Bausteine liefern Aussagen zu Auslastungen, Warteschlangen bzw. Warte-zeiten vor den Bausteinen sowie Flussgrößen zur Beschreibung der Abgangströme. The optimal arrangement of logistical systems and operations gets an increased importance for the economicalness and competitiveness of enterprises. For individual components of material flow systems there are also existing approximate solutions and substitute models besides exact analytical calculations in the form of polynomials, neural nets or time-discrete analysis which allows a good analytical description of the behaviour of these components. It is aim of the module system to define a superordinate and unified communication and data interface for all of these variety of methods with her specific input and output quantities. By using a graphic editor, the material flow system can be modelled of such components with specified functions and parameters. Connections between the components allows exchange of information. The calculations of the components provide statements concerning utilization, queue size or waiting time ahead of the components as well as parameters for the description of the departure process. Materialflusssysteme sind Träger innerbetrieblicher Transportprozesse und elementarer Bestandteil logistischer Systeme. Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Die effiziente Dimensionierung von Materialflusssystemen ist für Planer, Hersteller und Betreiber solcher Anlagen von grundsätzlicher Bedeutung. Für viele bei der Planung materialflusstechnischer Anlagen auftretende Fragestellungen steht noch immer kein Berechnungsverfahren oder -werkzeug zur Verfügung, welches allen drei folgenden Anforderungen gleicherma-ßen gerecht wird: Die Handhabung soll einfach, unkompliziert und schnell sein. Die Berechnungsergebnisse sollen eine hohe Genauigkeit haben. Die Berechnung soll allgemein gültige Ergebnisse liefern. Dabei handelt es sich um Fragestellungen, die durchaus grundlegender Natur sind. Beispielsweise nach den (statistisch) zu erwartenden minimalen und maximalen Auftragsdurchlaufzeiten, nach dem Einfluss von Belas-tungsschwankungen auf die Anlagenleistung, nach vorzusehenden Puffern (Stauplätze) und Leistungsreserven (Auslastung). Für die oben genannten Aufgaben der Materialflussplanung stehen heute hauptsächlich drei Verfahren zur Verfügung (Abb. 1): Faustformeln (gekennzeichnet mit f) sind einfach aber ungenau. Das Systemverhalten von Materialfluss-komponenten beschreiben sie selten über den gesamten Bereich möglicher Betriebsbedingungen und Konfi-gurationen. Das Verhalten von gesamten Materialflusssystemen ist zu komplex, als dass es mit Faustformeln adäquat beschreibbar wäre. Bedienungstheoretische Ansätze erlauben die Beschreibung von Materialflusskomponenten (kleines b) sehr genau und sehr umfassend, soweit Standardmethoden und -modelle der Bedienungstheorie anwendbar sind. Ist diese Voraussetzung nicht gegeben, kann der Aufwand zur Modellbildung schnell erheblich werden. Die Beschreibung von Materialflusssystemen (großes B) als Bedienungsnetzwerke ist nur unter (zum Teil stark) vereinfachenden Annahmen möglich. Solche Vereinfachungen gehen zu Lasten von Genauigkeit und All-gemeingültigkeit der Aussagen. Die Methoden sind häufig sehr komplex, ihre Anwendung erfordert vertief-te Kenntnisse in der Statistik und Stochastik. Simulationsuntersuchungen liefern für Materialflusskomponenten (kleines s) und für Materialflusssysteme (großes S) gleichermaßen genaue Aussagen. Der für die Untersuchungen erforderliche Aufwand hängt dabei weit weniger von den Eigenschaften und der Größe des Systems ab, als es bei bedienungstheoretischen An-sätzen der Fall ist. Die Aussagen der Simulation sind nie universell. Sie betreffen immer nur ein System in einer bestimmten Konfiguration. Die Anwendung der Simulation erfordert Spezialsoftware und vertiefte Kenntnisse in der Modellierung und Programmierung. Verfahren, die genaue und allgemein gültige Aussagen über das Verhalten komplexer Materialflusssysteme liefern können, sind insbesondere in der Phase der Angebotserstellung bzw. in der Phase der Grobplanung von besonderer Wichtigkeit. Andererseits sind heute verfügbare Verfahren aber zu kompliziert und damit unwirt-schaftlich. Gerade in der Phase der Systemgrobplanung werden häufig Änderungen in der Struktur des Systems notwendig, welche z.B. beim Einsatz der Simulation zu erheblichem Änderungsaufwand am Modell führt. Oftmals können solche Änderungen nicht schnell genug ausgeführt werden. Damit bleiben in der Praxis oft erhebliche Planungsunsicherheiten bestehen. Der Grundgedanke des Baukastensystems besteht in der Modularisierung von Materialflusssystemen in einzelne Bausteine und Berechnungen zum Verhalten dieser Komponenten. Die betrachteten Module sind Materialfluss-komponenten, die eine bestimmte logistische Funktion in einer konstruktiv bzw. steuerungstechnisch bedingten, definierten Weise ausführen. Das Verhalten einer Komponente wird durch Belastungen (Durchsatz) und techni-sche Parameter (Geschwindigkeit, Schaltzeit o.ä.) beeinflusst und kann durch ein adäquates mathematisches Modell quantifiziert werden. Das offene Baukastensystem soll dabei vor allem einen konzeptionellen Rahmen für die Integration derartiger Modellbausteine bilden. Es umfasst neben der Bausteinmodularisierung die Problematik der Kommunikation zwischen den Bausteinen (Schnittstellen) sowie Möglichkeiten zur Visualisierung von Ergebnissen. Das daraus abgeleitete softwaretechnische Konzept berücksichtigt neben der einheitlichen Integration der zum Teil stark unterschiedlichen Berechnungsverfahren für einzelne Materialflusskomponenten auch einheitliche Definitionen zur Beschreibung von benötigten Eingangsparametern einschließlich der Randbedingungen (Defini-tionsbereich) und Plausibilitätskontrollen sowie zur Ergebnisbereitstellung. Äußerst wichtig war die Zielstellung, das System offen und erweiterbar zu gestalten: Prototypisch wurden zwar einzelne vorliegende Bausteine integ-riert, es ist aber jederzeit möglich, weitere Verfahren in Form eines Bausteines zu implementieren und in das Baukastensystem einzubringen. Die Ergebnisse der Berechnungen für ein einzelnes Element (Output) fließen zugleich als Input in das nachfol-gende Element ein: Genau wie im realen Materialflusssystem durch Aneinanderreihung einzelner fördertechni-scher Elemente der Materialfluss realisiert wird, kommt es im Baukasten durch Verknüpfung der Bausteine zur Übertragung der relevanten Informationen, mit denen der Fluss beschrieben werden kann. Durch die Weitergabe der Ergebnisse kann trotz Modularisierung in einzelne Bausteine das Verhalten eines gesamten Materialflusssys-tems bestimmt werden. Daher sind auch hier einheitliche Festlegungen zu Art und Umfang der Übergabeparame-ter zwischen den Bausteinen erforderlich. Unter einem Baustein soll ein Modell einer Materialflusskomponente verstanden werden, welches das Verhalten dieser Komponente beim Vorliegen bestimmter Belastungen beschreibt. Dieses Verhalten ist insbesondere gekennzeichnet durch Warteschlangen und Wartezeiten, die vor der Komponente entstehen, durch Auslastung (Besetztanteil) der Komponente selbst und durch die Verteilung des zeitlichen Abstand (Variabilität) des die Komponente verlassenden Stroms an Transporteinheiten. Maßgeblich bestimmt wird dieses Verhalten durch Intensität und Variabilität des ankommenden Stroms an Transporteinheiten, durch die Arbeitsweise (z.B. stetig / unstetig, stochastisch / deterministisch) und zeitliche Inanspruchnahme der Komponente sowie durch Steuerungsregeln, mit denen die Reihenfolge (Priorisierung / Vorfahrt) und/oder Dauer der Abarbeitung (z.B. Regalbediengerät mit Strategie „Minimierung des Leerfahrtan-teils“) verändert werden. Im Grunde genommen beinhaltet ein Baustein damit ein mathematisches Modell, das einen oder mehrere an-kommende Ströme von Transporteinheiten in einen oder mehrere abgehende Ströme transformiert (Abb. 2). Derartige Modelle gibt es beispielsweise in Form von Bedienmodellen ([Gnedenko1984], [Fischer1990 u.a.]), zeitdiskreten Modellen ([Arnold2005], [Furmans1992]), künstlichen neuronalen Netzen ([Schulze2000], [Markwardt2003]), Polynomen ([Schulze1998]). Die zu Grunde liegenden Verfahren (analytisch, simulativ, numerisch) unterscheiden sich zwar erheblich, genü-gen aber prinzipiell den genannten Anforderungen. Die Fixierung auf ein mathematisches Modell ist aber nicht hinreichend, vielmehr bedarf es für einen Baustein auch definierter Schnittstellen, mit denen der Informationsaustausch erfolgen kann (Abb. 3). Dazu zählen neben der einheitlichen Bereitstellung von Informationen über die ankommenden und abgehenden Materialströme auch die Berücksichtigung einer individuellen Parametrierung der Bausteine sowie die Möglichkeit zur Interaktion mit dem Bediener (Anordnung, Parametrierung und Visualisierung). Das offene Konzept erlaubt das eigenständige Entwickeln und Aufnehmen neuer Bausteine in den Baukasten. Dazu ergibt sich als weitere Anforderung die einfache Konfigurierbarkeit eines Bausteins hinsichtlich Identifika-tion, Aussehen und Leistungsbeschreibung. An einen Baustein innerhalb des Baukastensystems werden weiter-hin die folgenden Anforderungen gestellt: Jeder Baustein ist eine in sich abgeschlossene Einheit und kann nur über die Ein- und Ausgänge mit seiner Umgebung kommunizieren. Damit ist ausgeschlossen, dass ein Baustein den Zustand eines ande-ren Bausteins beeinflussen kann. Das führt zu den beiden Lokalitätsbedingungen: Es gibt keine �����bergeordnete Steuerung, die in Abhängigkeit vom aktuellen Systemzustand dispositive Entscheidungen (z.B. zur Routenplanung) trifft. Blockierungen in Folge von Warteschlangen haben keine Auswirkungen auf die Funktion an-derer Bausteine. Bausteine beinhalten in sich abgeschlossene Verfahren zur Dimensionierung einer Komponente (Klas-se) des Materialflusssystems (z.B. Einschleusung auf einen Sorter, Drehtisch als Verzweigungselement oder als Eckumsetzer). Dabei werden auf Grund von technischen Parametern, Steuerungsstrategien und Belastungsannahmen (Durchsatz, Zeitverteilungen) Ergebnisse ermittelt. Ergebnisse im Sinne dieses Bausteinkonzepts sind Auslastungen, Warteschlangen bzw. Wartezeiten vor dem Baustein sowie Flussgrößen zur Beschreibung des Abgangstroms. Als Beschreibung eignen sich sowohl einzelne Kennwerte (Mittelwert, Varianz, Quantile) als auch statische Verteilungsfunktionen. Die Lokalitätsbedingungen stellen Einschränkungen in der Anwendbarkeit des Baukastensystems dar: Systeme mit übergeordneten Steuerungsebenen wie Routenplanung oder Leerfahrzeugsteuerung, die Entscheidungen auf Grund der vorhandenen Transportaufträge und des aktuellen Systemzustands treffen (Fahrerlose Transportsys-teme, Elektrohängebahn), können mit dem Baukasten nicht bearbeitet werden. Diese auf Unstetigförderern basierenden Systeme unterscheiden sich aber auch in ihren Einsatzmerkmalen grundlegend von den hier betrach-teten Stetigförderersystemen. Das Problem der Blockierungen vorgelagerter Bereiche durch zu große Warteschlangen kann dagegen bereits mit dem Baukasten betrachtet und zumindest visualisiert werden. Dazu ist den Verbindungen zwischen den Bausteinen eine Kapazität zugeordnet, so dass durch Vergleich mit den berechneten Warteschlangenlängen eine generelle Einschätzung zur Blockierungsgefahr möglich wird: Ist die Streckenkapazität kleiner als die mittlere Warteschlange, muss von einer permanenten Blockierung ausgegangen werden. In diesem Fall kann der vorhergehende Baustein seine gerade in Bearbeitung befindli-che Transporteinheit nach dem Ende der „Bedienung“ nicht sofort abgeben und behindert damit auch seine weiteren ankommenden Transporteinheiten. Für die Transporteinheiten bedeutet das eine Verlustzeit, die auch nicht wieder aufgeholt werden kann, für das gesamte Transportsystem ist von einer Leistungsminde-rung (geringerer Durchsatz, größere Transport- / Durchlaufzeit) auszugehen. Da bei der Berechnung der Bausteine von einer Blockierfreiheit ausgegangen wird, sind die Berechnungser-gebnisse in aller Regel falsch. Ist die Streckenkapazität zwar größer als die mittlere Warteschlange, aber kleiner als beispielsweise das 90%-Quantil der Warteschlange, ist mit teilweisen Blockierungen (in dem Fall mit mehr als 10% Wahr-scheinlichkeit) zu rechnen. Dann tritt der o.g. Effekt nur zeitweise auf. Die Ergebnisse der Berechungen sind dann zumindest für einzelne Bausteine ungenau. In beiden Fällen wird das Problem erkannt und dem Anwender signalisiert. Es wird davon ausgegangen, dass die geplante Funktionalität und Leistungsfähigkeit des Materialflusssystems nur dann gewährleistet ist, wenn keine Blockierungen auftreten. Durch Änderung der Parameter des kritischen Bausteins, aber auch durch Änderung der Materialströme muss daher eine Anpassung vorgenommen werden. Erst bei Vorliegen der Blockierfreiheit ist die Voraussetzung der Lokalität der Berechnungen erfüllt. Die Berechnungsverfahren in den Bausteinen selbst können wegen der Modularisierung (Lokalität) sehr unter-schiedlicher Art sein. Dabei ist es prinzipiell möglich, die einzelnen Ergebnisse eines Bausteins mit verschiede-nen Verfahren zu ermitteln, insbesondere dann, wenn auf Grund eines eingeschränkten Definitionsbereichs der Eingangsparameter die Anwendung eines bestimmten Verfahrens nicht zulässig ist. Bausteine, die einen Materialfluss auf Grund äußerer, nicht aus dem Verhalten des Bausteins resultierende Einflüsse generieren (Quelle) oder verändern (Service-Station), sind durch eine Flussgröße parametriert. Die Flussgröße ist eine statistische Verteilungsfunktion zur Beschreibung der Ankunfts- und Abgangsströme (Zwi-schenankunftszeiten). In der Praxis, insbesondere in der Planungsphase, ist aber eine solche Verteilungsfunktion meist nicht bekannt. Zudem erweist sich das Rechnen mit Verteilungsfunktionen als numerisch aufwändig. Untersuchungen in [Markwardt2003] haben gezeigt, dass eine Parametrisierung als Abstraktion über statistische Verteilungsfunktionen mit gleichen Erwartungswerten, Minima und Streuungen ausreichend genaue Ergebnisse liefert. Daher wird die Flussgröße beschrieben durch die Parameter Ankunftsrate (=Durchsatz), Mindestzeitabstand tmind und Variationskoeffizient c (als Maß für die Variabilität des Stroms). Zur Visualisierung der Ergebnisse kann die dreiparametrige Gammaverteilung zu Grunde gelegt werden, die eine gute Anpassung an reale Prozessverläufe bietet und durch die genannten Parameter eindeutig beschrieben ist: Weitere leistungsbestimmende Größen wie technische Parameter, Zeitbedarfe u.ä. werden als Parametertupel (k) der jeweiligen Klasse zugeordnet. So ist z.B. bei einer Einschleusung auf einen Sorter zu garantieren, dass der Strom auf der Hauptstrecke nicht angehalten wird. Das erfordert bei einer Einschleusung von der Nebenstrecke eine Lücke im Gutstrom auf der Hauptstrecke mit der Länge Mindestabstand und Fördergeschwindigkeit sind Parameter der ankommenden Förderstrecken, demnach ist lediglich die Größe ttr als Transferzeit ein leistungsbestimmender Parameter der Einschleusung. Förderstrecken stellen die Verbindungen zwischen den Bausteinen her und realisieren den eigentlichen Material-fluss durch das System. Die technische Realisierung kann dabei prinzipiell durch verschiedenartige Bauformen von Stetig- und Unstetigförderern erfolgen. Systeme, die aber vollständig auf der Basis von Unstetigförderern arbeiten wie fahrerlose Transportsysteme (FTS) oder Elektrohängebahn (EHB), werden im Rahmen des Baukas-tens nicht betrachtet, weil die Lokalitätsbedingungen nicht gelten und beispielsweise eine übergeordnete Sys-temsteuerung (Fahrzeugdisposition, Leerfahrtoptimierung) einen erheblichen Einfluss auf die Leistungsfähigkeit des Gesamtsystems hat. Förderstrecken im hier verwendeten Sinne sind Rollen-, Ketten-, Bandförderer oder ähnliches, deren maximaler Durchsatz im Wesentlichen durch zwei Parameter bestimmt wird: Fördergeschwindigkeit (vF) und Mindestab-stand zwischen den Transporteinheiten (smind). Der Mindestabstand ergibt sich aus der Länge der Transportein-heit in Transportrichtung (sx) und einem Sicherheitsabstand (s0), der für ein sicheres und gefahrloses Transportie-ren erforderlich ist. Die Mindestzeit tmind,S zwischen zwei Fördereinheiten auf einer Förderstrecke bestimmt sich demnach zu Ist das verbindende Förderelement nicht staufähig (nicht akkumulierend, z.B. Gurtbandförderer), so kann sich der Abstand zwischen den Fördergütern während des Förder- oder Transportvorgangs nicht verändern: Muss das Band angehalten werden, weil eine Abgabe an das nachfolgende Förderelement nicht möglich ist, bleiben alle Einheiten stehen. In diesem Fall ist es also nicht möglich, die Lücken im Transportstrom zu schließen, die bereits bei der Aufgabe auf das Förderelement entstehen. Für die Berechnung der Mindestzeit tmind,S bedeutet das, dass dann auch die Mindestzeit tmind,B des vorhergehenden Bausteins berücksichtigt werden muss. Die Mindestzeit des Streckenelements nach (6) bzw. (7) wird als einer der Parameter der Flussgröße zur Be-schreibung des am nachfolgenden Baustein ankommenden Stroms verwendet. Als Parameter der Förderstrecke werden neben der Fördergeschwindigkeit daher auch Angaben zum Transportgut (Abmessungen, Sicherheitsab-stand, Transportrichtung) benötigt. Es bot sich ferner an, eine Typisierung der Förderstrecken hinsichtlich ihrer technischen Realisierung (Rollenförderer, Kettenförderer, Bandförderer usw. mit zugeordneten Parametern) vorzunehmen, um den Aufwand für die Beschreibung der Förderstrecken gering zu halten. Weitere Parameter der Förderstrecken dienen der Aufnahme der Berechnungsergebnisse von vor- bzw. nachge-lagerten Bausteinen und beinhalten: die Länge der Warteschlange (einzelne Kenngrößen wie Mittelwert, 90%-, 95% bzw. 99%-Quantil oder - falls ermittelbar - als statistische Verteilung) die Wartezeit (ebenfalls Kenngrößen oder statistische Verteilung) die (Strecken-)Auslastung Variationskoeffizient für den Güterstrom Für die Darstellung des Materialflusses in einem System werden jeweils einzelne Materialfluss-Relationen betrachtet. Dabei wird angenommen, dass jede Relation an einer Quelle beginnt, an einer Senke endet, dabei mehrere Materialfluss-Komponenten (Bausteine) durchläuft und über den gesamten Verlauf in seiner Größe (Transportmenge) konstant bleibt. Einziger leistungsbestimmender Parameter einer Materialfluss-Relation ist die Transportmenge. Sie wird als zeitabhängige Größe angegeben und entspricht damit dem Durchsatz. Mindestabstand und Variationskoeffizient werden vom erzeugenden Baustein (Quelle) bestimmt, von den weiteren durchlaufenen Bausteinen verändert und über die Förderstrecken jeweils an den nachfolgenden Baustein übertragen. Die verbindenden Förderstrecken werden mit dem jeweiligen Durchsatz „belastet“. Bei Verbindungen, die von mehreren Relationen benutzt werden, summieren sich die Durchsätze, so dass sich unterschiedliche Strecken- und Bausteinbelastungen ergeben. Im Kontext des Baukastensystems werden Metadaten1 verwendet, um die in einem Baustein enthaltenen Infor-mationen über Anwendung, Verfahren und Restriktionen transparent zu machen. Ziel des Baukastensystems ist es je gerade, einfache und leicht handhabbare Berechnungsmodule für einen breiteren Anwenderkreis zur Verfü-gung zu stellen. Dazu sind Beschreibungen erforderlich, mit denen das Leistungsspektrum, mögliche Ergebnisse und Anwendungs- bzw. Einsatzkriterien dokumentiert werden. Aufgabe der Baustein-Bibliothek ist die Sammlung, Verwaltung und Bereitstellung von Informationen über die vorhandenen Bausteine. Damit soll dem Nutzer die Möglichkeit gegeben werden, für seine konkret benötigte Materialflusskomponente einen geeigneten Baustein zur Abbildung zu finden. Mit der Entwicklung weiterer Bausteine für ähnliche Funktionen, aber unterschiedliche Realisierungen (z. B. Regalbediengerät: einfach- oder doppeltiefe Lagerung, mit oder ohne Schnellläuferzone usw.) wächst die Notwendigkeit, die Einsatz- und Leis-tungsmerkmale des Bausteins in geeigneter Weise zu präsentieren. Die Baustein-Bibliothek enthält demnach eine formalisierte Beschreibung der vorhandenen und verfügbaren Bausteine. Die Informationen sind im Wesentlichen unter dem Aspekt einer einheitlichen Identifikation, Infor-mation, Visualisierung und Implementierung der unterschiedlichen Bausteine zusammengestellt worden. Einige der in der Baustein-Bibliothek enthaltenen Metadaten lassen sich durchaus mehreren Rubriken zuordnen. Identifikation und Information Ein Baustein wird durch eine eindeutige Ident-Nummer fixiert. Daneben geben Informationen zum Autor (Ent-wicklung und/oder Implementierung des Verfahrens) und eine Funktionsbeschreibung eine verbale Auskunft über den Baustein. Zusätzlich ist jeder Baustein einem bestimmten Typ zugeordnet entsprechend der Baustein-Klassifizierung (Bearbeiten, Verzweigen, Zusammenführen usw.), über den die Baustein-Auswahl eingegrenzt werden kann. Visualisierung Die Parameter für die Visualisierung beschreiben die Darstellung des Bausteins innerhalb des Baukastensystems (Form, Farbe, Lage der Ein- und Ausgänge des Bausteins, Icons). Implementierung Der Klassenname verweist auf die Implementierung des Bausteins. Zusätzlich benötigte Programm-Ressourcen (externe Bibliotheken wie *.dll , *.tcl o.ä.) können angegeben werden. Weiterhin sind Bezeichnungen und Erläuterungen der erforderlichen technischen Parameter für den Eingabedialog enthalten. Für die Förderstrecken wird ebenfalls eine formalisierte Beschreibung verwendet. Sie verweist jedoch nicht wie die Baustein-Bibliothek auf Software-Ressourcen, sondern enthält nur eine Reihe technischer Parameter, die für das Übertragungsverhalten der Förderstrecke eine Rolle spielen (Fördergeschwindigkeit, Arbeitsweise akkumu-lierend, Ausrichtung des Transportguts). Die Einträge lassen sich als Musterdatensätze (Template) für die Bau-stein-Verbindungen auffassen, um bestimmte, häufig vorkommende fördertechnische Lösungen diesen Verbin-dungen in einfacher Weise zuordnen zu können. Die Angaben sind aber im konkreten Anwendungsfall änderbar. Angaben zum Transportgut beschränken sich auf die Abmessungen der Transporteinheiten (Länge, Breite) und den erforderlichen Sicherheitsabstand (s0). Als Grundform wird von einer Standard-Euro-Palette (1200x800 mm) ausgegangen, es lassen sich aber auch Güter mit anderen Maßen hinzufügen. Die Angaben zum Transportgut werden in Verbindung mit den Parametern der Förderstrecken (Ausrichtung des Gutes längs oder quer) ausgewertet, so dass sich die jeweiligen Mindestabstände (Gleichung 6 bzw. 7) sowie der maximale Durchsatz Qmax als Grundlage für die Berechnung der Streckenauslastung bestimmen lassen. Das Gesamtkonzept des Baukastensystems ist in Abbildung 4 dargestellt. Es besteht im Wesentlichen aus drei Bereichen: Bausteinerstellung Bausteinverwaltung (Bibliotheken) Baukasten (Benutzeroberfläche) Dabei ist der Bereich der Bausteinerstellung nicht unmittelbarer Bestandteil der realisierten Lösung. Sie ist vielmehr die Quelle für die Bausteine, die über die jeweiligen Metadaten in einer Baustein-Bibliothek verwaltet und bereitgestellt werden. Die Verwaltung von Bausteinen und Förderstrecken ist die Umsetzung der Baustein-Bibliothek und (im erwei-terten Sinne) der Definitionen für die Förderstrecken. Der Modellbaukasten selbst stellt die Grafische Nutzeroberfläche dar (Abb. 11) und enthält den interaktiven, grafischen Modelleditor, die Auswahlelemente (Werkzeugkoffer bzw. -filter) für Bausteine und Förderstrecken, tabellarische Übersichten für alle Bausteine, Förderstrecken und Materialflussrelationen sowie Eingabedialoge für Bausteine, Förderstrecken und Materialflussrelationen. Die Entwicklung eines Modells mit dem Baukastensystem erfolgt prinzipiell in drei Schritten: Schritt eins umfasst die Anordnung und Definition der Bausteine. Der Modellbaukasten bietet die Möglich-keit, einen bestimmten Baustein direkt (z.B. Ausschleusung) oder unter Nutzung eines Bausteinfilters (z.B. alle Verzweigungselemente) auszuwählen und im grafischen Editor mittels Mausklick zu platzieren . An-schließend erfolgt im Dialog die notwendige Parametrierung des Bausteins. Dies beinhaltet sowohl die An-gaben zur Visualisierung (Drehung, Spiegelung) als auch die für die Dimensionierung erforderlichen techni-schen Parameter. Die für jeden Baustein benötigten Leistungsanforderungen (Durchsatz, lokale Transport-matrix) werden allerdings nicht direkt angegeben, sondern aus den Beziehungen zu den vor- und nachgela-gerten Bausteinen automatisch ermittelt (Übertragungsfunktion der Förderstrecken). Danach erfolgt in einem zweiten Schritt die Definition von Verbindung zwischen den Bausteinen (Förder-strecken): Das Erzeugen der Bausteinverbindungen ist ebenfalls ganz einfach zu realisieren. Nach Auswahl der zu Grunde liegenden Fördertechnik (z.B. Rollenförderer) wird durch Ziehen des Mauszeigers von einem nicht belegten Ausgang zu einem nicht belegten Eingang eines Bausteins die entsprechende Förderstrecke erzeugt. In einem abschließenden Dialog können die gewählten Voreinstellungen zum Transportgut, zum Förderertyp usw. bestätigt oder gegebenenfalls korrigiert werden. Außerdem kann die Kapazität der Förder-strecke definiert werden. Dabei geht es weniger um die Länge des Förderers als viel mehr um die Anzahl der vorgesehenen Puffer- oder Stauplätze im Zusammenhang mit den zu berechnenden Warteschlangenlän-gen. Abschließend wird im dritten Schritt der Materialfluss definiert: Ein Materialstrom ist jeweils eine Relation, die an einer Quelle beginnt, an einer Senke endet und dabei mehrere Bausteine durchläuft. Da die Förder-strecken zu diesem Zeitpunkt bereits definiert sein müssen, kann automatisch ein möglicher Weg zwischen Quelle und Senke gefunden werden. Ähnlich wie bei Routenplanungssystemen kann dabei durch zusätzliche Angabe von Zwischenpunkten (via) der automatisch vorgeschlagene Transportweg verändert und angepasst werden (Abb. 5). Nach Bestätigung des Transportweges und damit der unterwegs zu passierenden Bausteine erfolgt in einem Dialog die Parametrierung (Transportmenge pro Stunde) für diese Relation. Die Elemente des Transportweges (die benutzten Förderstrecken) werden mit dem entsprechenden Durchsatz „belastet“. Nach Abschluss der Modellierung kann die Berechnung ausgeführt werden. Im Ergebnis werden Kennzahlen bestimmt und im Baukasten in verschiedener Form visualisiert, um eine Bewertung der Ergebnisse vornehmen zu können. Eine Übersicht Fehlermeldungen listet die Problemelemente auf. Dabei wird die Schwere eines Problems farb-lich hervorgehoben: fataler Fehler (rot): entsteht z.B. bei Überlastung eines Bausteins – die geforderte Leistung für einen Bau-stein (und damit die des Gesamtsystems) kann nicht erbracht werden. lokaler Fehler (orange): entsteht z.B. bei permanenter Blockierung – die mittlere Warteschlange vor einem Baustein ist größer als dessen vorgesehene Kapazität. Warnung (hellgelb): bei teilweiser Blockierung – das 90%-Quantil der Warteschlange ist größer als die Ka-pazität der Förderstrecke, es ist daher zeitweise mit Blockierungen (und damit Behinderungen des vorherge-henden Bausteins) zu rechnen. Information (weiß): wird immer dann erzeugt, wenn Erwartungswerte für die Wartezeit oder Warteschlange mit einem G/G/1-Bedienmodell berechnet werden. Die Lösungen dieser Näherungsgleichungen sind im All-gemeinen nicht sehr genau, dienen aber als Abschätzung für die sonst fehlenden Kennwerte. Entsprechend der berechneten Auslastung werden die Bausteine im Modelleditor mit einer Farbabstufung von Grün nach Rot markiert, Bausteine und Förderstrecken leuchten rot bei Überlastung. Die dargestellten Ergebnisse im Modelleditor zu Bausteinen und Förderstrecken sind umschaltbar durch den Nutzer (Abb. 6). Je nach den in den Bausteinen hinterlegten Berechnungen sind jedoch nicht immer alle Kenn-größen verfügbar. Die Implementierung des Baukastensystems wurde mit Java (Release 1.5) vorgenommen. Für das Kernsystem wird dabei das in Abbildung 7 dargestellte Klassen-Konzept umgesetzt. Ausgehend von einer allgemeinen Klasse (Object3D) für Visualisierung von und Interaktionen mit grafischen Objekten wurden für Bausteine (AbstractNode) und Förderstrecken (Connection) die jeweiligen Klassen abgelei-tet. Für die Förderstecken ergibt sich dabei eine weitgehend einheitliche Beschreibungsform, die lediglich durch die Parametrierung (Vorlagen in der Förderstrecken-Bibliothek als XML-Datei) auf den konkreten Einsatz im Modell des Materialflusssystems angepasst werden muss. Anders verhält es sich mit den Bausteinen: Durch die mögliche Vielfalt von Bausteinen und den ihnen zu Grunde liegenden Berechnungsverfahren muss es auch eine Vielzahl von Klassen geben. Um jedoch für jeden belie-bigen Baustein den Zugriff (Bereitstellung von Eingangsdaten, Berechnung und Bereitstellung der Ergebnisse) in einer identischen Weise zu gewährleisten, muss es dafür eine nach außen einheitliche Schnittstelle geben. Die Java zu Grunde liegende objektorientierte Programmierung bietet mit dem Konzept der „abstrakten Klasse“ eine Möglichkeit, dies in einfacher Weise zu realisieren. Dazu wird mit AbstractNode quasi eine Vorlage entwi-ckelt, von der alle implementierten Baustein-Klassen abgeleitet sind. AbstractNode selbst enthält alle Methoden, mit denen Baustein-Daten übernommen oder übergeben, die jeweiligen Visualisierungen vorgenommen, die baustein-internen Verbindungen (lokale Transportmatrix) verwaltet und Ein- und Ausgänge mit den zugehörigen Förderstrecken verbunden werden. Die für den Aufruf der eigentlichen Berechnungen in den Bausteinen ver-wendeten Methoden sind deklariert, aber nicht implementiert (sogenannte abstrakte Methoden). Ein Baustein wird von AbstractNode abgeleitet und erbt damit die implementierten Methoden, lediglich die abstrakten Methoden, die die Spezifik des Bausteins ausmachen, sind noch zu implementieren. Um neue Bausteine zu erzeugen, wird Unterstützung in Form eines Bildschirmdialogs angeboten (Abb. 8). Danach sind die entsprechenden Angaben zu den Metadaten, zur Struktur und zur Visualisierung des Bausteins, die Eingangsparameter (Name und Erläuterung) sowie die berechenbaren Ergebnisse (z.B. Auslastung, Quantile der Warteschlangenlänge, aber keine Aussage zu Wartezeiten usw.) anzugeben. Nach Bestätigung der Daten und diversen Syntax- bzw. Semantik-Kontrollen wird der Baustein in der Bibliothek registriert, ein Sourcecode für den neuen Baustein generiert und kompiliert. Der Baustein selbst ist damit formal korrekt und kann sofort verwendet werden, liefert aber noch keine verwertbaren Ergebnisse, weil natürlich die Implementierung des Berechnungsverfahrens selbst noch aussteht. Das muss in einem zweiten Schritt im Rah-men der üblichen Software-Entwicklung nachgeholt werden. Dazu sind die Berechnungsverfahren zu implemen-tieren und die Bausteinschnittstellen zu bedienen. Der generierte Java-Code enthält in den Kommentaren eine Reihe von Hinweisen für den Programmierer, so dass sich problemlos die Schnittstellen des Bausteins program-mieren lassen (Abb. 9). In einem Beispiel werden ein Hochregallager (3 Regalbediengeräte) und zwei Kommissionierplätze durch ein Transportsystem verbunden. Mit der Einlastung von Kommissionieraufträgen werden im Simulationsmodell die entsprechenden Transportaufträge generiert und abgearbeitet (Abb. 10). Dabei können Systemzustände (z.B. Warteschlangen) protokolliert und statistisch ausgewertet werden. Ein entsprechendes Modell für den Baukasten ist in Abbildung 11 dargestellt. Der Vorteil des Baukastensystems liegt selbst bei diesem recht einfachen Beispiel im Zeitvorteil: Für Erstellung und Test des Simulationsmodells und anschließende Simulationsläufe und Auswertungen wird ein Zeitaufwand von ca. 4-5 Stunden benötigt, das Baukastenmodell braucht für Erstellung und korrekte Parametrierung weniger als 0,5 Stunden, die Rechenzeit selbst ist vernachlässigbar gering. Sollte im Ergebnis der Untersuchungen eine Änderung des Materialflusssystems notwendig werden, so führt das im Simulationsmodell teilweise zu erheblichen Änderungen (Abläufe, Steuerungsstrategien, Auswertungen) mit entsprechendem Zeitaufwand. Im Baukasten können dagegen in einfacher Weise zusätzliche Bausteine eingefügt oder vorhandene ersetzt werden durch Bausteine mit geänderter Funktion oder Steuerung. Strukturelle Änderungen am Materialflusssys-tem sind also mit deutlich geringerem Aufwand realisierbar. In [Markwardt2003] werden für mehrere Strukturen von Materialflusskomponenten Fehlerbetrachtungen über die Genauigkeit der mittels neuronaler Netze untersuchten Systeme gegenüber den Simulationsergebnissen vorge-nommen. Danach ergibt sich beispielsweise für das 90%-Quantil der Warteschlange eine Abweichung, die mit 90% Sicherheit kleiner als 0,3 Warteplätze ist. Bei den Variationskoeffizienten des Abgangsstroms betragen die absoluten Abweichungen mit 90% Sicherheit nicht mehr als 0,02 bis 0,05 (in Abhängigkeit vom betrachteten Baustein). Daraus wird die Schlussfolgerung abgeleitet, dass die durch Verknüpfung neuronaler Netze gewonne-nen Aussagen sehr gut mit statistischen Ergebnissen diskreter Simulation übereinstimmen und eine Planungssi-cherheit ermöglichen, die für einen Grobentwurf von Materialflusssystemen weit über die heute gebräuchlichen statischen Berechnungsverfahren hinausgehen. Im konkreten Beispiel wurde die Zahl der Pufferplätze vor den Kommissionierern (Work1 bzw. Work2) zu-nächst auf 3 begrenzt. Die Berechnung im Baukasten ergab dabei in beiden Fällen Fehlermeldungen mit dem Hinweis auf Blockierungen (Abb. 12, links). Diese bestätigten sich auch im Simulationsmodell (Abb. 12, rechts). Nach Vergr��ßerung der Pufferstrecken auf 7 Plätze ist die Blockierungsgefahr auf ein vertretbares Minimum reduziert, und die mit dem Baukasten berechneten Kenngrößen können durch die Simulation prinzipiell bestätigt werden. it dem offenen Baukastensystem ist eine schnelle, einfache, sichere und damit wirtschaftlichere Dimensionie-rung von Materialflusssystemen möglich. Für den Anwender sind sofort statistisch abgesicherte und ausreichend genaue Ergebnisse ohne aufwändige Berechnungen verfügbar, womit sich die Planungsqualität erhöht. Besonde-re Anforderungen an Hard- und Software sind dabei nicht erforderlich. Für die Dimensionierung der einzelnen Bausteine stehen Informationen aus der Bedienungstheorie, Simulati-onswissen und numerische Verfahren direkt und anwendungsbereit zur Verfügung. Es erlaubt eine deutlich vereinfachte Berechnung von statistischen Kenngrößen wie Quantile (statistische Obergrenzen) der Pufferbelegung, Auslastung von Einzelelementen und mittlere Auftragsdurchlaufzeit bei gleichzeitig erhöhter Genauigkeit. Ferner ist das Baukastensystem offen für eine Erweiterung um neue Bausteine, die neue oder spezielle fördertechnische Elemente abbilden oder zusätzliche Informationen liefern können. Da auch komplexe Materialflusssysteme immer wieder aus einer begrenzten Anzahl unterschiedlicher Kompo-nenten bestehen, können durch die Verknüpfung der Einzelbausteine auch Gesamtsysteme abgebildet werden. Die Verknüpfung der Bausteine über eine einheitliche Schnittstelle erlaubt Aussagen über das Verhalten der Gesamtanlage. Bei Einsatz des Baukastensystems sind in einer solchen Verknüpfung jederzeit Parameterände-rungen möglich, deren Folgen sofort sichtbar werden. Die Zeit bis zum Vorliegen gesicherter, ausreichend genauer Ergebnisse wird dadurch drastisch verkürzt. Damit erwächst Variantenuntersuchungen bereits in frühen Planungsphasen neues Potential und kann zum entscheidenden Wettbewerbsvorteil werden.